One Model To Learn Them All

MultiModel, SEI—“multi modal multi tasks model
TiE%M
— . convolutional blocks

1. dilated convolutional layer: Z=AEI/Y 5kEFR, BIEN T Kfilterxd FE/S
Hrespective field (EZZEIRIEISRIEEARN)

BN SN Aweight 0, ERH0, E—1HN1-dilated, MiE—RRIEIR, B
=85 73*3; E N N2-dilated, I:,ﬁuﬁ};z E1-dilatedfg, BZEFN77; B="1N4-
dilated, EBIEE1-dilated. 2-dilatedfg, B=ZEFH15%15,

(a) (b)
E—HHwavelet{FHAJdilated conv:
©.0.0.0.0.0.0.0.0.0.0.0.0.0 0.9 ows
copi ,,,,f “ors-ooF° Dilation =8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

2. depthwise separable convolution

FILUAAMEMEE T channel X 573K, AEHAIEIIITE, AINZZTEN
extreme Inception, BEF@ET—1*18con (AILLUARNEpointwiselIEFR, 2XED
REFTACchannel il L, BrIZRFHE A channelBREIZFAIchannel) , B#H1T



depthwise separable convolution, Tiseparable convolutioniZftdepthwiseH
pointwisely,

Figure 4. An “extreme” version of our Inception module, with one
spatial convolution per output channel of the 1x1 convolution.
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ConvStepy s, (W, z) = LN (SepConvgy s (W, ReLU (x))).

hiddenl(z) = ConvStep(W3 !, z)

hidden2(z) = z + ConvStep(W;5", hidden1(z))
hidden3(z) = ConvStep(W,3*", hidden2(z))
hiddend(z) = z + ConvStepy—s(W,s ', hidden3(z))

Dropout(hiddend(z),0.4) during training

ConvBlock(z) = {hzdden4( ) otherwise
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where [a||4b] represent concatenation of a and b along the d* dimension. The source tensor is finally

passed through two different pointwise convolutions to generate the memory keys K and values V'

and the query keys, memory keys and memory values are used to apply the attention mechanism
between the self-attended target and the source (see Figure[3).
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The body of the MultiModel consists of 3 parts: the encoder that only processes the inputs, the
mixer that mixes the encoded inputs with previous outputs (autoregressive part), and a decoder that
processes the inputs and the mixture to generate new outputs.

The encoder, mixer and decoder are structured similarly to previous fully convolutional sequence to
sequence models such as ByteNet [11] or WaveNet [29], but differ in the computational blocks that
are used. We depict their architecture in Figure 3| As can be seen there, the encoder consists of 6
repeated convolutional blocks (described before) with a mixture-of-experts layer in the middle. The
mixer consists of an attention block and 2 convolutional blocks. The decoder consists of 4 blocks of
convolutions and attention, with a mixture-of-experts layer in the middle. Crucially, the convolutions
in the mixer and decoder are padded on the left, so they can never access any information in the future.
This allows the model to be autoregressive, and this convolutional autoregressive generation scheme
offers large receptive fields over the inputs and past outputs, which are capable of establishing long
term dependencies.

To allow the decoder to produce outputs for different tasks even with the same modality, we always
start decoding with a command-token, such as To-English or To-Parse-Tree. We learn an embedding
vector corresponding to each of the tokens during training.






