One Model To Learn Them All

MultiModel, SEI—“multi modal multi tasks model
TiE%M
— . convolutional blocks

1. dilated convolutional layer: Z=AEI/Y 5kEFR, BIEN T Kfilterxd FE/S
Hrespective field (EZZEIRIEISRIEEARN)

BN SN Aweight 0, ERH0, E—1HN1-dilated, MiE—RRIEIR, B
=85 73*3; E N N2-dilated, I:,ﬁuﬁ};z E1-dilatedfg, BZEFN77; B="1N4-
dilated, EBIEE1-dilated. 2-dilatedfg, B=ZEFH15%15,

(a) (b)
E—HHwavelet{FHAJdilated conv:
©.0.0.0.0.0.0.0.0.0.0.0.0.0 0.9 ows
copi ,,,,f “ors-ooF° Dilation =8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

2. depthwise separable convolution

FILUAAMEMEE T channel X 573K, AEHAIEIIITE, AINZZTEN
extreme Inception, BEF@ET—1*18con (AILLUARNEpointwiselIEFR, 2XED
REFTACchannel il L, BrIZRFHE A channelBREIZFAIchannel) , B#H1T

depthwise separable convolution, Tiseparable convolutioniZftdepthwiseH
pointwisely,

Figure 4. An “extreme” version of our Inception module, with one
spatial convolution per output channel of the 1x1 convolution.

Concat
Ix3 Ix3 Ix3 Ix3 Ix3 3x3
channels
1x1 conv
|
Input

3. IRBILEH
convstep R Zseparable dilated convolution, #Af5#Ehidden2Fhidden4® A0
residual®fsy, ZJfgdropout—T,

ConvStepy s, (W, z) = LN (SepConvgy s (W, ReLU (x))).

hiddenl(z) = ConvStep(W3 !, z)

hidden2(z) = z + ConvStep(W;5", hidden1(z))
hidden3(z) = ConvStep(W,3*", hidden2(z))
hiddend(z) = z + ConvStepy—s(W,s ', hidden3(z))

Dropout(hiddend(z),0.4) during training

ConvBlock(z) = {hzdden4() otherwise

__. attention blocks
1. multi-head dot-product attention
{$#Fmulti-head dot-product attention mechanism3€it&attention

Dot-Prod. Attention

Q K Vv
¥ ¥ v
Split Split Split

¥ ¥

MatMul
¥

SoftMax
¥ "

MatMul
v
Dot-product
Attention

I 2 Y5target data (embedding) #timing embeddingE &80, AEBIME
dilation conv, Bffmulti-head self-attention; #5380l Zsource data (embedding) 7
FENF Npointwise conv, ZEEIZLBHEEI—multi-head attention, BZ|—1
target (target/Zquery) *Fsource (sourcesgkey and value) HJattentionZEf%,

Attention

Target Source

Timing

5x1 ConvStep
Dilation 1

Pointwise

Dot-Prod. Attention

Attended Source

2. timing
timing 8% i Nz iZMtarget dataf Iz —#¥, #B=2[batch_size, time_step,
hidden_size], EIEX Tsample, XJfitime stepAt, BBAXSRAInhiddenER s AOSE2d 44
MeE2d+1 D R EsinFlcostiE, PILAIARSThiddendl 3 89S EALFB LIS Bl Fsin
Mcoskhi®, Hep, dRE T EZHZLMEIRE, URE T EZHZNETNL

A(2d) = led™ e
timing(t, [2d,2d + 1]) = [sin(tA(2d)) ||2 cos(tA(2d))]
where [a||4b] represent concatenation of a and b along the d* dimension. The source tensor is finally

passed through two different pointwise convolutions to generate the memory keys K and values V'

and the query keys, memory keys and memory values are used to apply the attention mechanism
between the self-attended target and the source (see Figure[3).

3. Mixture-of-Experts Blocks
Efexpert blockstVHE . RBIFARFHNASR,

4. Encoder and Mixer and Decoder
T E|#input encodertitencoded inputsIA K 1/0 Mixer#iiHencoded outputs, FE{E
J9DecoderfIHIAN ., EFBBHNAGXFRAIERconcat (JEHY) . attentionB9Z= M%)
AN&fEntargetiy, ELLZMEIconvETEBREIARRINES (BRAREAERA
H, XH&FIFER) . TXHlong term dependenciest] LAIRR A\ S F5 2
BEEM N TTEXNRAIIER (The shorter these paths between any combination of
positions in the input and output sequences, the easier it is to learn long-range
dependencies.)

ConvBlock Input Encoder I/0 Mixer Decoder
Encoded Encoded Encoded
Inputs Inputs Inputs Outputs Outputs Inputs
Timing e o) ARerton
3x1 ConvStep
Dilation 1 3x ConvBlock @
¥ 3x1 ConvStep
3x1 ConvStep Mixture of Dilation 1
Dilation 1 Experts (opt.) 3x1 ConvStep ¥
Dilation 1 3x1 ConvStep
g. Dilation 1
e Comi)
Dilation 1 3x
] 2x
15x1 ConvStep ax
Dilation 4 7 Attention
T_/ Encoded Encoded Decoded
Outputs Inputs Outputs Outputs

The body of the MultiModel consists of 3 parts: the encoder that only processes the inputs, the
mixer that mixes the encoded inputs with previous outputs (autoregressive part), and a decoder that
processes the inputs and the mixture to generate new outputs.

The encoder, mixer and decoder are structured similarly to previous fully convolutional sequence to
sequence models such as ByteNet [11] or WaveNet [29], but differ in the computational blocks that
are used. We depict their architecture in Figure 3| As can be seen there, the encoder consists of 6
repeated convolutional blocks (described before) with a mixture-of-experts layer in the middle. The
mixer consists of an attention block and 2 convolutional blocks. The decoder consists of 4 blocks of
convolutions and attention, with a mixture-of-experts layer in the middle. Crucially, the convolutions
in the mixer and decoder are padded on the left, so they can never access any information in the future.
This allows the model to be autoregressive, and this convolutional autoregressive generation scheme
offers large receptive fields over the inputs and past outputs, which are capable of establishing long
term dependencies.

To allow the decoder to produce outputs for different tasks even with the same modality, we always
start decoding with a command-token, such as To-English or To-Parse-Tree. We learn an embedding
vector corresponding to each of the tokens during training.

