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For more information on machine learning for Astronomy, see the astroMLa code and examples.
ahttp://astroML.github.com

Machine Learning for Astronomy with scikit-learn

This tutorial offers a brief introduction to the fields of machine learning and statistical data analysis, and their
application to several problems in the field of astronomy. These learning tasks are enabled by the tools available
in the open-source package scikit-learna.
scikit-learnb is a Python module integrating classic machine learning algorithms in the tightly-knit world of
scientific Python packages (numpyc, scipyd, matplotlibe). It aims to provide simple and efficient solutions to
learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a
versatile tool for science and engineering.
Many of the examples and exercises in this tutorial require the ipython notebookf, a tool which provides an
intuitive web-based interactive environment for scientific python. Some of the material in the notebooks is
duplicated in the following pages, but ipython notebook is required for some parts. For information on how to
download the associated notebooks, see the Tutorial Setup and Installation (page 2) page.

ahttp://www.scikit-learn.org
bhttp://www.scikit-learn.org
chttp://numpy.scipy.org
dhttp://www.scipy.org
ehttp://matplotlib.sourceforge.net
fhttp://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html

Note: This document is meant to be used with scikit-learn version 0.11+. Find the latest version here.
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CHAPTER 1

Tutorial Setup and Installation

Objectives

At the end of this section, you will
1. Have scikit-learn and all the prerequisites and dependencies for this tutorial installed on your machine.
2. Download the source files and data required for this tutorial

1.1 Python Prerequisites

This tutorial is based on scikit-learn, which has the following dependencies:

• numpy1 : this is a python module which has powerful tools for the creation and manipulation of arrays. It is the
foundation of most scientific computing packages in python

• scipy2 : this is a python module which builds on numpy and provides fast implementations of many basic
scientific algorithms.

• matplotlib3 : this is a powerful package for generating plots, figures, and diagrams. Our main form of visual
interaction with data and results depends on matplotlib.

We will also make extensive use of iPython4, an interactive python interpreter. In particular, much of the interactive
material requires ipython notebook5 functionality, which was introduced in ipython version 0.12.

1.1.1 Installing scikit-learn and Dependencies

Please refer to the install page6 for per-system instructions on installing scikit-learn. In addition to numpy, scipy,
and scikit-learn, this tutorial will assume that you have matplotlib and ipython installed as well.

• Under Debian or Ubuntu Linux you should use:

1http://numpy.scipy.org
2http://www.scipy.org
3http://matplotlib.sourceforge.net/
4http://ipython.org
5http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
6http://www.scikit-learn.org/stable/install.html#installing-an-official-release
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% sudo apt-get install build-essential python-dev python-numpy \
python-numpy-dev python-scipy libatlas-dev g++ python-matplotlib \
ipython

If you are under Ubuntu 12.04+, then you can use

% sudo apt-get install ipython-notebook

to install ipython notebook with all dependencies.

• Under MacOSX you should probably use a scientific python distribution such as Scipy Superpack7

• Under Windows the Python(x,y)8 is probably your best bet to get a working numpy / scipy environment up and
running.

• Power-users may wish to install bleeding edge versions of these packages from the source. The source can be
downloaded using git from the packages’ respective GitHub9 repositories.

Alternatively under Windows and MaxOSX you can use the EPD10 (Enthought Python Distribution) which is a (non-
open source) packaging of the scientific python stack.

Note: that to use ipython notebook11, you must install ipython version 0.12 and several other dependencies. Refer
to the ipython documentation for details.

1.2 Tutorial Files

The source code for the example files in the following pages is best accessed through cloning the scikit-learn repository
using git12. Once git is installed the command to accomplish this is:

% git clone https://github.com/astroML/sklearn_tutorial

This creates a directory called sklearn_tutorial and copies all the source files of this tutorial. Most of the
relevant files are in the sklearn_tutorial/doc sub-directory. In what follows, this directory will be named
$TUTORIAL_HOME. It should contain the following folders:

• data - folder to put the datasets used during the tutorial

• skeletons - sample incomplete scripts for the exercices (these should be used only if ipython notebook
is unavailable)

• solutions - solutions of the exercices (these should be used only if ipython notebook is unavailable)

• notebooks - ipython notebooks which provide an interactive interface to parts of this tutorial. These contain
material which is not in the skeletons and solutions.

If you are not going to use ipython notebook to run the examples, you can copy the skeletons into a new folder named
workspace where you will edit your own files for the exercices while keeping the original skeletons intact:

% cp -r skeletons workspace

7http://fonnesbeck.github.com/ScipySuperpack/
8http://www.pythonxy.com/
9http://www.github.com

10https://www.enthought.com/products/epd.php
11http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
12http://git-scm.com/
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1.3 Download the datasets

Machine Learning algorithms need data. Go to each $TUTORIAL_HOME/data/ sub-folder and run the
fetch_data.py script from there (after having read them first). This will download a dataset to the current di-
rectory. This tutorial has three such datasets; they will be used in the examples and exercises later on.

To get all three datasets, run the following:

% cd $TUTORIAL_HOME/data/sdss_colors
% python fetch_data.py

% cd $TUTORIAL_HOME/data/sdss_photoz
% python fetch_data.py

% cd $TUTORIAL_HOME/data/sdss_spectra
% python fetch_data.py

1.3. Download the datasets 4



CHAPTER 2

Machine Learning 101: General
Concepts

Objectives

By the end of this section you will
1. Know how to extract features from real-world data in order to perform machine learning tasks.
2. Know the basic categories of supervised learning, including classification and regression problems.
3. Know the basic categories of unsupervised learning, including dimensionality reduction and clustering.
4. Understand the distinction between linearly separable and non-linearly separable data.

In addition, you will know several tools within scikit-learn which can be used to accomplish the above tasks.

In this section we will begin to explore the basic principles of machine learning. Machine Learning is about building
programs with tunable parameters (typically an array of floating point values) that are adjusted automatically so as
to improve their behavior by adapting to previously seen data.

Machine Learning can be considered a subfield of Artificial Intelligence since those algorithms can be seen as build-
ing blocks to make computers learn to behave more intelligently by somehow generalizing rather that just storing and
retrieving data items like a database system would do.

A very simple example of a machine learning task can be seen in the following figure: it shows a collection of two-
dimensional data, colored according to two different class labels. A classification algorithm is used to draw a dividing
boundary between the two clusters of points:

As with all figures in this tutorial, the above image has a hyper-link to the python source code which is used to generate
it.

2.1 Features and feature extraction

Most machine learning algorithms implemented in scikit-learn expect a numpy array as input X. The expected
shape of X is (n_samples, n_features).

n_samples The number of samples: each sample is an item to process (e.g. classify). A sample can be
a document, a picture, a sound, a video, a row in database or CSV file, or whatever you can describe
with a fixed set of quantitative traits.

5
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Figure 2.1: Example Linear Decision Boundary

n_features The number of features or distinct traits that can be used to describe each item in a quan-
titative manner.

The number of features must be fixed in advance. However it can be very high dimensional (e.g. millions of features)
with most of them being zeros for a given sample. In this case we may use scipy.sparse matrices instead of
numpy arrays so as to make the data fit in memory.

2.1.1 A simple example: the iris dataset

Note: The information in this section is available in an interactive notebook 01_datasets.ipynb, which can be
viewed using iPython notebook1. An online static view can be seen here2.

The machine learning community often uses a simple flowers database where each row in the database (or CSV file)
is a set of measurements of an individual iris flower. Each sample in this dataset is described by 4 features and can
belong to one of the target classes:

Features in the Iris dataset

0. sepal length in cm

1. sepal width in cm

2. petal length in cm

3. petal width in cm
1http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
2http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/01_datasets.ipynb

2.1. Features and feature extraction 6
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Target classes to predict

0. Iris Setosa

1. Iris Versicolour

2. Iris Virginica

scikit-learn embeds a copy of the iris CSV file along with a helper function to load it into numpy arrays:

>>> from sklearn.datasets import load_iris
>>> iris = load_iris()

The features of each sample flower are stored in the data attribute of the dataset:

>>> n_samples, n_features = iris.data.shape

>>> n_samples
150

>>> n_features
4

>>> iris.data[0]
array([ 5.1, 3.5, 1.4, 0.2])

The information about the class of each sample is stored in the target attribute of the dataset:

>>> len(iris.target) == n_samples
True

>>> iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

The names of the classes are stored in the last attribute, namely target_names:

>>> list(iris.target_names)
[’setosa’, ’versicolor’, ’virginica’]

2.1.2 Handling categorical features

Sometimes people describe samples with categorical descriptors that have no obvious numerical representation. For
instance assume that each flower is further described by a color name among a fixed list of color names:

color in [’purple’, ’blue’, ’red’]

The simple way to turn this categorical feature into numerical features suitable for machine learning is to create new
features for each distinct color name that can be valued to 1.0 if the category is matching or 0.0 if not.

The enriched iris feature set would hence be in this case:

0. sepal length in cm

1. sepal width in cm

2.1. Features and feature extraction 7
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2. petal length in cm

3. petal width in cm

4. color#purple (1.0 or 0.0)

5. color#blue (1.0 or 0.0)

6. color#red (1.0 or 0.0)

2.1.3 Extracting features from unstructured data

The previous example deals with features that are readily available in a structured dataset with rows and columns of
numerical or categorical values.

However, most of the produced data is not readily available in a structured representation such as SQL, CSV,
XML, JSON or RDF.

Here is an overview of strategies to turn unstructed data items into arrays of numerical features.

Text documents Count the frequency of each word or pair of consecutive words in each doc-
ument. This approach is called Bag of Words3

Note: we include other file formats such as HTML and PDF in this category: an ad-hoc
preprocessing step is required to extract the plain text in UTF-8 encoding for instance.

Images

• Rescale the picture to a fixed size and take all the raw pixels values (with or without
luminosity normalization)

• Take some transformation of the signal (gradients in each pixel, wavelets trans-
forms...)

• Compute the Euclidean, Manhattan or cosine similarities of the sample to a set
reference prototype images aranged in a code book. The code book may have been
previously extracted from the same dataset using an unsupervised learning algorithm
on the raw pixel signal.

Each feature value is the distance to one element of the code book.

• Perform local feature extraction: split the picture into small regions and perform
feature extraction locally in each area.

Then combine all the features of the individual areas into a single array.

Sounds Same strategy as for images within a 1D space instead of 2D

Practical implementations of such feature extraction strategies will be presented in the last sections of this tutorial.

2.2 Supervised Learning, Unsupervised Learning, and
scikit-learn syntax

Machine learning can be broken into two broad regimes: supervised learning and unsupervised learning. We’ll intro-
duce these concepts here, and discuss them in more detail below.

In Supervised Learning, we have a dataset consisting of both features and labels. The task is to construct an estimator
which is able to predict the label of an object given the set of features. A relatively simple example is predicting the

3http://scikit-learn.org/dev/modules/feature_extraction.html#text-feature-extraction

2.2. Supervised Learning, Unsupervised Learning, and scikit-learn syntax 8
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species of iris given a set of measurements of its flower. This is a relatively simple task. Some more complicated
examples are:

• given a multicolor image of an object through a telescope, determine whether that object is a star, a quasar, or a
galaxy.

• given a photograph of a person, identify the person in the photo.

• given a list of movies a person has watched and their personal rating of the movie, recommend a list of movies
they would like (A famous example is the Netflix Prize4).

What these tasks have in common is that there is one or more unknown quantities associated with the object which
needs to be determined from other observed quantities. Supervised learning is further broken down into two categories,
classification and regression. In classification, the label is discrete, while in regression, the label is continuous. For
example, in astronomy, the task of determining whether an object is a star, a galaxy, or a quasar is a classification
problem: the label is from three distinct categories. On the other hand, we might wish to determine the age of an
object based on such observations: this would be a regression problem: the label (age) is a continuous quantity.

Unsupervised Learning addresses a different sort of problem. Here the data has no labels, and we are interested in
finding similarities between the objects in question. In a sense, you can think of unsupervised learning as a means
of discovering labels from the data itself. Unsupervised learning comprises tasks such as dimensionality reduction,
clustering, and density estimation. For example, in the iris data discussed above, we can used unsupervised methods
to determine combinations of the measurements which best display the structure of the data. As we’ll see below, such
a projection of the data can be used to visualize the four-dimensional dataset in two dimensions. Some more involved
unsupervised learning problems are:

• given detailed observations of distant galaxies, determine which features or combinations of features are most
important in distinguishing between galaxies.

• given a mixture of two sound sources (for example, a person talking over some music), separate the two (this is
called the blind source separation5 problem).

• given a video, isolate a moving object and categorize in relation to other moving objects which have been seen.

scikit-learn strives to have a uniform interface across all methods, and we’ll see examples of these below. Given
a scikit-learn estimator object named model, the following methods are available:

• Available in all Estimators

– model.fit() : fit training data. For supervised learning applications, this accepts two arguments: the
data X and the labels y (e.g. model.fit(X, y)). For unsupervised learning applications, this accepts
only a single argument, the data X (e.g. model.fit(X)).

• Available in supervised estimators

– model.predict() : given a trained model, predict the label of a new set of data. This method accepts
one argument, the new data X_new (e.g. model.predict(X_new)), and returns the learned label for
each object in the array.

– model.predict_proba() : For classification problems, some estimators also provide this method,
which returns the probability that a new observation has each categorical label. In this case, the label with
the highest probability is returned by model.predict().

• Available in unsupervised estimators

– model.transform() : given an unsupervised model, transform new data into the new basis. This also
accepts one argument X_new, and returns the new representation of the data based on the unsupervised
model.

4http://en.wikipedia.org/wiki/Netflix_prize
5http://en.wikipedia.org/wiki/Blind_signal_separation

2.2. Supervised Learning, Unsupervised Learning, and scikit-learn syntax 9
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– model.fit_transform() : some estimators implement this method, which performs a fit and a
transform on the same input data.

2.3 Supervised Learning: model.fit(X, y)

As mentioned above, a supervised learning algorithm makes the distinction between the raw observed data X with
shape (n_samples, n_features) and some label given to the model during training. In scikit-learn this
array is often noted y and has generally the shape (n_samples,). After training, the fitted model will try to predict
the most likely labels y_new for new a set of samples X_new.

Depending on the nature of the target y, supervised learning can be given different names:

• If y has values in a fixed set of categorical outcomes (represented by integers) the task to predict y is called
classification.

• If y has floating point values (e.g. to represent a price, a temperature, a size...), the task to predict y is called
regression.

2.3.1 Classification

Classification is the task of predicting the value of a categorical variable given some input variables (a.k.a. the features
or “predictors”). This section includes a first exploration of classification with scikit-learn. We’ll explore a detailed
example of classification with astronomical data in Classification: Learning Labels of Astronomical Sources (page 30).

A first classifier example with scikit-learn

Note: The information in this section is available in an interactive notebook
02_iris_classification.ipynb, which can be viewed using iPython notebook6. An online static
view can be seen here7

6http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
7http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/02_iris_classification.ipynb
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Figure 2.2: Overview of supervised Learning with scikit-learn

In the iris dataset example, suppose we are assigned the task to guess the class of an individual flower given the
measurements of petals and sepals. This is a classification task, hence we have:

>>> X, y = iris.data, iris.target

Once the data has this format it is trivial to train a classifier, for instance a support vector machine with a linear kernel:

>>> from sklearn.svm import LinearSVC
>>> clf = LinearSVC()

Note: Whenever you import a scikit-learn class or function for the first time, you are advised to read the docstring by
using the ? magic suffix of ipython, for instance type: LinearSVC?.

clf is a statistical model that has parameters that control the learning algorithm (those parameters are sometimes
called the hyperparameters). Those hyperparameters can be supplied by the user in the constructor of the model. We
will explain later how to choose a good combination using either simple empirical rules or data driven selection:

>>> clf
LinearSVC(C=1.0, dual=True, fit_intercept=True, intercept_scaling=1,

loss=’l2’, multi_class=False, penalty=’l2’, tol=0.0001)

By default the real model parameters are not initialized. They will be tuned automatically from the data by calling the
fit method:

>>> clf = clf.fit(X, y)

>>> clf.coef_
array([[ 0.18..., 0.45..., -0.80..., -0.45...],

[ 0.05..., -0.89..., 0.40..., -0.93...],
[-0.85..., -0.98..., 1.38..., 1.86...]])

2.3. Supervised Learning: model.fit(X, y) 11
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>>> clf.intercept_
array([ 0.10..., 1.67..., -1.70...])

Once the model is trained, it can be used to predict the most likely outcome on unseen data. For instance let us define
a list of simple sample that looks like the first sample of the iris dataset:

>>> X_new = [[ 5.0, 3.6, 1.3, 0.25]]

>>> clf.predict(X_new)
array([0], dtype=int32)

The outcome is 0 which is the id of the first iris class, namely ‘setosa’.

The following figure places the location of the fit and predict calls on the previous flow diagram. The vec object
is a vectorizer used for feature extraction that is not used in the case of the iris data (it already comes as vectors of
features):

Some scikit-learn classifiers can further predict probabilities of the outcome. This is the case of logistic regres-
sion models:

>>> from sklearn.linear_model import LogisticRegression
>>> clf2 = LogisticRegression().fit(X, y)
>>> clf2
LogisticRegression(C=1.0, dual=False, fit_intercept=True, intercept_scaling=1,

penalty=’l2’, tol=0.0001)
>>> clf2.predict_proba(X_new)
array([[ 9.07512928e-01, 9.24770379e-02, 1.00343962e-05]])

This means that the model estimates that the sample in X_new has:

• 90% likelyhood to belong to the ‘setosa’ class

• 9% likelyhood to belong to the ‘versicolor’ class

• 1% likelyhood to belong to the ‘virginica’ class

Of course, the predict method that outputs the label id of the most likely outcome is also available:

>>> clf2.predict(X_new)
array([0], dtype=int32)

Notable implementations of classifiers

sklearn.linear_model.LogisticRegression8

Regularized Logistic Regression based on liblinear

sklearn.svm.LinearSVC9

Support Vector Machines without kernels based on liblinear

sklearn.svm.SVC10

Support Vector Machines with kernels based on libsvm

sklearn.linear_model.SGDClassifier11

8http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
9http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC

10http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
11http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
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Regularized linear models (SVM or logistic regression) using a Stochastic Gradient Descent algorithm
written in Cython

sklearn.neighbors.NeighborsClassifier

k-Nearest Neighbors classifier based on the ball tree datastructure for low dimensional data and brute
force search for high dimensional data

sklearn.naive_bayes.GaussianNB12

Gaussian Naive Bayes model. This is an unsophisticated model which can be trained very quickly. It is
often used to obtain baseline results before moving to a more sophisticated classifier.

Sample application of classifiers

The following table gives examples of applications of classifiers for some common engineering tasks:

Task Predicted outcomes
E-mail classification Spam, normal, priority mail
Language identification in text documents en, es, de, fr, ja, zh, ar, ru...
News articles categorization Business, technology, sports...
Sentiment analysis in customer feedback Negative, neutral, positive
Face verification in pictures Same / different person
Speaker verification in voice recordings Same / different person
Astronomical Sources Object type or class

2.3.2 Regression

Regression is the task of predicting the value of a continuously varying variable (e.g. a price, a temperature, a con-
version rate...) given some input variables (a.k.a. the features, “predictors” or “regressors”). We’ll explore a detailed
example of regression with astronomical data in Regression: Photometric Redshifts of Galaxies (page 35).

Some notable implementations of regression models in scikit-learn include:

sklearn.linear_model.Ridge13

L2-regularized least squares linear model

sklearn.linear_model.ElasticNet14

L1+L2-regularized least squares linear model trained using Coordinate Descent

sklearn.linear_model.LassoLARS

L1-regularized least squares linear model trained with Least Angle Regression

sklearn.linear_model.SGDRegressor15

L1+L2-regularized least squares linear model trained using Stochastic Gradient Descent

sklearn.linear_model.ARDRegression16

Bayesian Automated Relevance Determination regression

sklearn.svm.SVR17

12http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
13http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
14http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet
15http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor
16http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html#sklearn.linear_model.ARDRegression
17http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
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Non-linear regression using Support Vector Machines (wrapper for libsvm)

sklearn.ensemble.RandomForestRegressor18

An ensemble method which constructs multiple decision trees from subsets of the data.

2.4 Unsupervised Learning: model.fit(X)

Figure 2.3: Unsupervised Learning overview

An unsupervised learning algorithm only uses a single set of observations X with shape (n_samples,
n_features) and does not use any kind of labels.

An unsupervised learning model will try to fit its parameters so as to best summarize regularities found in the data.

The following introduces the main variants of unsupervised learning algorithms, namely dimensionality reduction and
clustering.

2.4.1 Dimensionality Reduction and visualization

Dimensionality reduction is the task of deriving a set of new artificial features that is smaller than the original feature
set while retaining most of the variance of the original data.

Normalization and visualization with PCA

Note: The information in this section is available in an interactive notebook
03_iris_dimensionality.ipynb, which can be viewed using iPython notebook19. An online static
view can be seen here20

18http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
19http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
20http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/03_iris_dimensionality.ipynb
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The most common technique for dimensionality reduction is called Principal Component Analysis.

PCA can be done using linear combinations of the original features using a truncated Singular Value Decomposition21

of the matrix X so as to project the data onto a base of the top singular vectors.

If the number of retained components is 2 or 3, PCA can be used to visualize the dataset:

>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=2, whiten=True).fit(X)

Once fitted, the pca model exposes the singular vectors in the components_ attribute:

>>> pca.components_
array([[ 0.17..., -0.04..., 0.41..., 0.17...],

[-1.33..., -1.48..., 0.35..., 0.15...]])

>>> pca.explained_variance_ratio_
array([ 0.92..., 0.05...])

>>> pca.explained_variance_ratio_.sum()
0.97...

Let us project the iris dataset along those first 2 dimensions:

>>> X_pca = pca.transform(X)

The dataset has been “normalized”, which means that the data is now centered on both components with unit variance:

>>> import numpy as np

>>> np.round(X_pca.mean(axis=0), decimals=5)
array([-0., 0.])

>>> np.round(X_pca.std(axis=0), decimals=5)
array([ 1., 1.])

Furthermore the samples components do no longer carry any linear correlation:

>>> import numpy as np

>>> np.round(np.corrcoef(X_pca.T), decimals=5)
array([[ 1., -0.],

[-0., 1.]])

We can visualize the dataset using pylab, for instance by defining the following utility function:

>>> import pylab as pl

>>> from itertools import cycle
>>> def plot_2D(data, target, target_names):
... colors = cycle(’rgbcmykw’)
... target_ids = range(len(target_names))
... pl.figure()
... for i, c, label in zip(target_ids, colors, target_names):
... pl.scatter(data[target == i, 0], data[target == i, 1],
... c=c, label=label)
... pl.legend()
... pl.show()
...

Calling plot_2D(X_pca, iris.target, iris.target_names) will display the following:
21http://en.wikipedia.org/wiki/Singular_value_decomposition#Truncated_SVD
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Figure 2.4: 2D PCA projection of the iris dataset

Note that this projection was determined without any information about the labels (represented by the colors): this
is the sense in which the learning is unsupervised. Nevertheless, we see that the projection gives us insight into the
distribution of the different flowers in parameter space: notably, iris setosa is much more distinct than the other two
species.

Note: The default implementation of PCA computes the SVD of the full data matrix, which is not scalable when both
n_samples and n_features are big (more that a few thousands).

If you are interested in a number of components that is much smaller than both n_samples and n_features,
consider using sklearn.decomposition.RandomizedPCA22 instead.

Other applications of dimensionality reduction

Dimensionality Reduction is not just useful for visualization of high dimensional datasets. It can also be used as a
preprocessing step (often called data normalization) to help speed up supervised machine learning methods that are
not computationally efficient with high n_features such as SVM classifiers with gaussian kernels for instance or
that do not work well with linearly correlated features.

Note: scikit-learn also features an implementation of Independant Component Analysis (ICA) and several
manifold learning methods (See Exercise 3: Dimensionality Reduction of Spectra (page 49))

2.4.2 Clustering

Clustering is the task of gathering samples into groups of similar samples according to some predefined similarity or
dissimilarity measure (such as the Euclidean distance).

22http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.RandomizedPCA.html#sklearn.decomposition.RandomizedPCA
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For example, let us reuse the output of the 2D PCA of the iris dataset and try to find 3 groups of samples using the
simplest clustering algorithm (KMeans):

>>> from sklearn.cluster import KMeans
>>> from numpy.random import RandomState
>>> rng = RandomState(42)

>>> kmeans = KMeans(n_clusters=3, random_state=rng).fit(X_pca)

>>> np.round(kmeans.cluster_centers_, decimals=2)
array([[ 1.02, -0.71],

[ 0.33, 0.89],
[-1.29, -0.44]])

>>> kmeans.labels_[:10]
array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

>>> kmeans.labels_[-10:]
array([0, 0, 1, 0, 0, 0, 1, 0, 0, 1])

We can plot the assigned cluster labels instead of the target names with:

plot_2D(X_pca, kmeans.labels_, ["c0", "c1", "c2"])

Figure 2.5: KMeans cluster assignements on 2D PCA iris data

Exercise

Repeat the clustering algorithm from above, but fit the clusters to the full dataset X rather than the projection
X_pca. Do the labels computed this way better match the true labels?

2.4. Unsupervised Learning: model.fit(X) 17
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Notable implementations of clustering models

The following are two well-known clustering algorithms. Like most unsupervised learning models in the scikit, they
expect the data to be clustered to have the shape (n_samples, n_features):

sklearn.cluster.KMeans23

The simplest, yet effective clustering algorithm. Needs to be provided with the number of clusters in
advance, and assumes that the data is normalized as input (but use a PCA model as preprocessor).

sklearn.cluster.MeanShift24

Can find better looking clusters than KMeans but is not scalable to high number of samples.

sklearn.cluster.DBSCAN

25 Can detect irregularly shaped clusters based on density, i.e. sparse regions in the
input space are likely to become inter-cluster boundaries. Can also detect outliers (samples that are not part of a
cluster).

sklearn.manifold.LocallyLinearEmbedding26

Locally Linear Embedding is a nonlinear neighbors-based manifold learning technique. The scikit-learn
implementation makes available several variants to the basic algorithm.

sklearn.manifold.Isomap27

Isomap is another neighbors-based manifold learning method that can find nonlinear projections of data.

Other clustering algorithms do not work with a data array of shape (n_samples, n_features) but directly with
a precomputed affinity matrix of shape (n_samples, n_samples):

sklearn.cluster.AffinityPropagation28

Clustering algorithm based on message passing between data points.

sklearn.cluster.SpectralClustering29

KMeans applied to a projection of the normalized graph Laplacian: finds normalized graph cuts if the
affinity matrix is interpreted as an adjacency matrix of a graph.

sklearn.cluster.Ward30

Ward implements hierarchical clustering based on the Ward algorithm, a variance-minimizing ap-
proach. At each step, it minimizes the sum of squared differences within all clusters (inertia cri-
terion).

DBSCAN can work with either an array of samples or an affinity matrix.

Applications of clustering

Here are some common applications of clustering algorithms:

• Building customer profiles for market analysis

• Grouping related web news (e.g. Google News) and websearch results

• Grouping related stock quotes for investment portfolio management
23http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
24http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift
26http://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding
27http://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap
28http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation
29http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering
30http://scikit-learn.org/stable/modules/generated/sklearn.cluster.Ward.html#sklearn.cluster.Ward
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• Can be used as a preprocessing step for recommender systems

• Can be used to build a code book of prototype samples for unsupervised feature extraction for supervised
learning algorithms

2.5 Linearly separable data

Some supervised learning problems can be solved by very simple models (called generalized linear models) depending
on the data. Others simply don’t.

To grasp the difference between the two cases, run the interactive example from the examples folder of the
scikit-learn source distribution. (if you don’t have the scikit-learn source code locally installed, you can find the
script here):

% python $SKL_HOME/examples/svm_gui.py

1. Put some data points belonging to one of the two target classes (‘white’ or ‘black’) using left click and right
click.

2. Choose some parameters of a Support Vector Machine to be trained on this toy dataset (n_samples is the
number of clicks, n_features is 2).

3. Click the Fit but to train the model and see the decision boundary. The accurracy of the model is displayed on
stdout.

The following figures demonstrate one case where a linear model can perfectly separate the two classes while the other
is not linearly separable (a model with a gaussian kernel is required in that case).

Figure 2.6: Linear Support Vector Machine trained to perfectly separate 2 sets of data points labeled as white and
black in a 2D space.
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Figure 2.7: Support Vector Machine with gaussian kernel trained to separate 2 sets of data points labeled as white and
black in a 2D space. This dataset would not have been seperated by a simple linear model.

Exercise

Fit a model that is able to solve the XOR problem using the GUI: the XOR problem is composed of 4 samples:
• 2 white samples in the top-left and bottom-right corners
• 2 black samples in the bottom-left and top-right corners

Question: is the XOR problem linearly separable?

Exercise

Construct a problem with less than 10 points where the predictive accuracy of the best linear model is 50%.

Note: the higher the dimension of the feature space, the more likely the data is linearly separable: for instance this is
often the case for text classification tasks.

2.6 Hyperparameters, training set, test set and overfitting

The above SVM example displays an example of hyperparameters, which are model parameters set before the training
process. For example, when using an RBF model, we choose the kernel coefficient gamma before fitting the data. We
must be able to then evaluate the goodness-of-fit of our model given this choice of hyperparameter.

The most common mistake beginners make when training statistical models is to evaluate the quality of the model on
the same data used for fitting the model:

If you do this, you are doing it wrong!

2.6. Hyperparameters, training set, test set and overfitting 20
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2.6.1 The overfitting issue

Evaluating the quality of the model on the data used to fit the model can lead to overfitting. Consider the following
dataset, and three fits to the data (we’ll explore this example in more detail in the next section (page 24)).

Figure 2.8: Examples of over-fitting and under-fitting a two-dimensional dataset.

Evaluating the d = 6 model using the training data might lead you to believe the model is very good, when in fact it
does not do a good job of representing the data. The problem lies in the fact that some models can be subject to the
overfitting issue: they can learn the training data by heart without generalizing. The symptoms are:

• the predictive accurracy on the data used for training can be excellent (sometimes 100%)

• however, the models do little better than random prediction when facing new data that was not part of the training
set

If you evaluate your model on your training data you won’t be able to tell whether your model is overfitting or not.

2.6.2 Solutions to overfitting

The solution to this issue is twofold:

1. Split your data into two sets to detect overfitting situations:

• one for training and model selection: the training set

• one for evaluation: the test set

2. Avoid overfitting by using simpler models (e.g. linear classifiers instead of gaussian kernel SVM) or
by increasing the regularization parameter of the model if available (see the docstring of the model
for details)

An even better option when experimenting with classifiers is to divide the data into three sets: training, testing and
holdout. You can then optimize your features, settings and algorithms for the testing set until they seem good enough,
and finally test on the holdout set (perhaps after adding the test set to the training set).

When the amount of labeled data available is small, it may not be feasible to construct training and test sets. In that
case, you can choose to use k-fold cross validation: divide the dataset into k = 10 parts of (roughly) equal size, then
for each of these ten parts, train the classifier on the other nine and test on the held-out part.

2.6.3 Measuring classification performance on a test set
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Note: The information in this section is available in an interactive notebook 05_iris_crossval.ipynb, which
can be viewed using iPython notebook31. An online static view can be seen here32

Here is an example on you to split the data on the iris dataset.

First we need to shuffle the order of the samples and the target to ensure that all classes are well represented on both
sides of the split:

>>> indices = np.arange(n_samples)
>>> indices[:10]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> RandomState(42).shuffle(indices)
>>> indices[:10]
array([ 73, 18, 118, 78, 76, 31, 64, 141, 68, 82])

>>> X = iris.data[indices]
>>> y = iris.target[indices]

We can now split the data using a 2/3 - 1/3 ratio:

>>> split = (n_samples * 2) / 3

>>> X_train, X_test = X[:split], X[split:]
>>> y_train, y_test = y[:split], y[split:]

>>> X_train.shape
(100, 4)

>>> X_test.shape
(50, 4)

>>> y_train.shape
(100,)

>>> y_test.shape
(50,)

We can now re-train a new linear classifier on the training set only:

>>> clf = LinearSVC().fit(X_train, y_train)

To evaluate its quality we can compute the average number of correct classifications on the test set:

>>> np.mean(clf.predict(X_test) == y_test)
1.0

This shows that the model has a predictive accurracy of 100% which means that the classification model was perfectly
capable of generalizing what was learned from the training set to the test set: this is rarely so easy on real life datasets
as we will see in the following chapter.

In the next section (page 24), we will explore in more detail the bias-variance tradeoff and the practical use of machine
learning techniques.

31http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
32http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/05_iris_crossval.ipynb
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2.7 Key takeaway points

• Build X (features vectors) with shape (n_samples, n_features)

• Supervised learning: clf.fit(X, y) and then clf.predict(X_new)

– Classification: y is an array of integers

– Regression: y is an array of floats

• Unsupervised learning: clf.fit(X)

– Dimensionality Reduction with clf.transform(X_new)

* for visualization

* for scalability

– Clustering finds group id for each sample

• Some models work much better with data normalized with PCA

• Simple linear models can fail completely (non linearly separable data)

• Simple linear models often very useful in practice (esp. with large n_features)

• Before starting to train a model: split train / test data:

– use training set for model selection and fitting

– use test set for model evaluation

– use cross-validation when your dataset is small

• Complex models can overfit (learn by heart) the training data and fail to generalize correctly on test data:

– try simpler models first

– tune the regularization parameter on a validation set
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CHAPTER 3

Machine Learning 102: Practical Advice

Objectives

By the end of this section you will
1. Be able to describe the hyperparameters of a model, and how cross-validation can be used to estimate

them.
2. Be able to describe the concepts of bias & variance, and overfitting & underfitting

3. Be able to use learning curves to recognize when a model has high bias or high variance, and choose the
corect course of action.

Note: The information in this section is available in an interactive notebook 06_learning_curves.ipynb,
which can be viewed using iPython notebook1. An online static view can be seen here2.

In practice, much of the task of machine learning involves selecting algorithms, parameters, and sets of data to optimize
the results of the method. All of these things can affect the quality of the results, but it’s not always clear which is best.
For example, if your results have an error that’s larger than you hoped, you might imagine that increasing the training
set size will always lead to better results. But this is not the case! Below, we’ll explore the reasons for this.

Note: much of the material in this section was adapted from Andrew Ng’s excellent set of machine learning video
lectures. See http://www.ml-class.org.

In this section we’ll work with an extremely simple learning model: polynomial regression. This simply fits a polyno-
mial of degree d to the data: if d = 1, then it is simple linear regression. Polynomial regression can be done with the
functions polyfit and polyval, available in numpy. For example:

>>> import numpy as np

>>> np.random.seed(42)
>>> x = np.random.random(20)
>>> y = np.sin(2 * x)
>>> p = np.polyfit(x, y, 1) # fit a 1st-degree polynomial (i.e. a line) to the data

>>> print p
[ 0.97896174 0.20367395]
>>> x_new = np.random.random(3)

1http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
2http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/06_learning_curves.ipynb
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>>> y_new = np.polyval(p, x_new) # evaluate the polynomial at x_new

>>> print abs(np.sin(x_new) - y_new)
[ 0.22826933 0.20119119 0.20166572]

Using a 1st-degree polynomial fit (that is, fitting a straight line to x and y), we predicted the value of y for a new input.
This prediction has an absolute error of about 0.2 for the few test points which we tried. We can visualize the fit with
the following function:

>>> import pylab as pl

>>> def plot_fit(x, y, p):
... xfit = np.linspace(0, 1, 1000)
... yfit = np.polyval(p, xfit)
... pl.scatter(x, y, c=’k’)
... pl.plot(xfit, yfit)
... pl.xlabel(’x’)
... pl.ylabel(’y’)

Calling plot_fit with the x, y, and p values from above produces the following figure:

Figure 3.1: Best-fit linear regression to sinusoidal data.

When the error of predicted results is larger than desired, there are a few courses of action that can be taken:

1. Increase the number of training points N. This might give us a training set with more coverage, and lead to
greater accuracy.

2. Increase the degree d of the polynomial. This might allow us to more closely fit the training data, and lead to a
better result

3. Add more features. If we were to, for example, perform a linear regression using x,
p
x, x�1, or other functions,

we might hit on a functional form which can better be mapped to the value of y.
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The best course to take will vary from situation to situation, and from problem to problem. In this situation, number
2 and 3 may be useful, but number 1 will certainly not help: our model does not intrinsically fit the data very well.
In machine learning terms, we say that it has high bias and that the data is under-fit. The ability to quickly figure out
how to tune and improve your model is what separates good machine learning practitioners from the bad ones. In this
section we’ll discuss some tools that can help determine which course is most likely to lead to good results.

3.1 Bias, Variance, Over-fitting, and Under-fitting

We’ll work with a simple example. Imagine that you would like to build an algorithm which will predict the price of a
house given its size. Naively, we’d expect that the cost of a house grows as the size increases, but there are many other
factors which can contribute. Imagine we approach this problem with the polynomial regression discussed above. We
can tune the degree d to try to get the best fit.

Figure 3.2: Polynomials of various degrees. d = 1 under-fits the data, while d = 6 over-fits the data.

In the above figure, we see fits for three different values of d. For d = 1, the data is under-fit. This means that the
model is too simplistic: no straight line will ever be a good fit to this data. In this case, we say that the model suffers
from high bias. The model itself is biased, and this will be reflected in the fact that the data is poorly fit. At the other
extreme, for d = 6 the data is over-fit. This means that the model has too many free parameters (6 in this case) which
can be adjusted to perfectly fit the training data. If we add a new point to this plot, though, chances are it will be very
far from the curve representing the degree-6 fit. In this case, we say that the model suffers from high variance. The
reason for this label is that if any of the input points are varied slightly, it could result in an extremely different model.

In the middle, for d = 2, we have found a good mid-point. It fits the data fairly well, and does not suffer from the bias
and variance problems seen in the figures on either side. What we would like is a way to quantitatively identify bias
and variance, and optimize the metaparameters (in this case, the polynomial degree d) in order to determine the best
algorithm. This can be done through a process called cross-validation.

3.2 Cross-Validation and Testing

In order to quantify the effects of bias and variance and construct the best possible estimator, we will split our training
data into three parts: a training set, a cross-validation set, and a test set. As a general rule, the training set should be
about 60% of the samples, and the cross-validation and test sets should be about 20% each.

The general idea is as follows. The model parameters (in our case, the coefficients of the polynomials) are learned
using the training set as above. The error is evaluated on the cross-validation set, and the meta-parameters (in our
case, the degree of the polynomial) are adjusted so that this cross-validation error is minimized. Finally, the labels
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are predicted for the test set. These labels are used to evaluate how well the algorithm can be expected to perform on
unlabeled data.

Note: Why do we need both a cross-validation set and a test set? Many machine learning practitioners use the
same set of data as both a cross-validation set and a test set. This is not the best approach, for the same reasons we
outlined above. Just as the parameters can be over-fit to the training data, the meta-parameters can be over-fit to the
cross-validation data. For this reason, the minimal cross-validation error tends to under-estimate the error expected on
a new set of data.

The cross-validation error of our polynomial classifier can be visualized by plotting the error as a function of the
polynomial degree d. This plot is shown in the following figure:

Figure 3.3: The training error and cross-validation error as a function of the polynomial degree d.

This figure compactly shows the reason that cross-validation is important. On the left side of the plot, we have very
low-degree polynomial, which under-fits the data. This leads to a very high error for both the training set and the
cross-validation set. On the far right side of the plot, we have a very high degree polynomial, which over-fits the data.
This can be seen in the fact that the training error is very low, while the cross-validation error is very high. Plotted for
comparison is the intrinsic error (this is the scatter artificially added to the data: click on the above image to see the
source code). For this toy dataset, error = 1.0 is the best we can hope to attain. Choosing d = 6 in this case gets us very
close to the optimal error.

The astute reader will realize that something is amiss here: in the above plot, d = 6 gives the best results. But in the
previous plot, we found that d = 6 vastly over-fits the data. What’s going on here? The difference is the number of
training points used. In the previous example, there were only eight training points. In this example, we have 100. As
a general rule of thumb, the more training points used, the more complicated model can be used. But how can you
determine for a given model whether more training points will be helpful? A useful diagnostic for this are learning

curves.
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3.3 Learning Curves

A learning curve is a plot of the training and cross-validation error as a function of the number of training points. Note
that when we train on a small subset of the training data, the training error is computed using this subset, not the full
training set. These plots can give a quantitative view into how beneficial it will be to add training samples.

Figure 3.4: Learning Curves for a case of high bias (left, d = 2) and high variance (right, d = 20)

On the left plot, we have the learning curve for d = 1. From the above discussion, we know that d = 1 is a high-bias
estimator which under-fits the data. This is indicated by the fact that both the training and cross-validation errors are
very high. If this is the case, adding more training data will not help matters: both lines have converged to a relatively
high error.

In the right plot, we have the learning curve for d = 20. From the above discussion, we know that d = 20 is a high-
variance estimator which over-fits the data. This is indicated by the fact that the training error is much less than the
cross-validation error. As we add more samples to this training set, the training error will continue to climb, while the
cross-validation error will continue to decrease, until they meet in the middle. In this case, our intrinsic error is 1.0
(again, this is artificially set in the code: click on the image to browse the source code), and we can see that adding
more data will allow the estimator to very closely match the best possible cross-validation error.

Note: With a degree-20 polynomial, we’d expect the training error to be identically zero for training set size N <=

20. Why is this? It is because when the degrees of freedom are greater than the number of constraints, the problem
should be perfectly solvable: a curve can be found which passes through every point (for example, imagine fitting a
line to a single point. You’d be very surprised if you got anything but a perfect fit!) In the right-hand plot we see
that this (correct) intuition fails in practice. The reason is due to floating-point precision: to perfectly fit these data
points with a polynomial requires a fit that oscillates to extreme values in the space between the points (compare to
the degree-6 polynomial above). The nature of our dataset means that this oscillation is outside machine precision, so
that the resulting fit has a small residual.

3.4 Summary

We’ve seen above that an under-performing algorithm can be due to two possible situations: high bias (under-fitting)
and high variance (over-fitting). In order to evaluate our algorithm, we set aside a portion of our training data for
cross-validation. Using the technique of learning curves, we can train on progressively larger subsets of the data,
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evaluating the training error and cross-validation error to determine whether our algorithm has high variance or high
bias. But what do we do with this information?

3.4.1 High Bias

If our algorithm shows high bias, the following actions might help:

1. Add more features. In our example of predicting home prices, it may be helpful to make use of information
such as the neighborhood the house is in, the year the house was built, the size of the lot, etc. Adding these
features to the training and test sets can improve a high-bias estimator

2. Use a more sophisticated model. Adding complexity to the model can help improve on bias. For a polynomial
fit, this can be accomplished by increasing the degree d. Each learning technique has its own methods of adding
complexity.

3. Use fewer samples. Though this will not improve the classification, a high-bias algorithm can attain nearly the
same error with a smaller training sample. For algorithms which are computationally expensive, reducing the
training sample size can lead to very large improvements in speed.

4. Decrease regularization. Regularization is a technique used to impose simplicity in some machine learning
models, by adding a penalty term that depends on the characteristics of the parameters. If a model has high bias,
decreasing the effect of regularization can lead to better results.

3.4.2 High Variance

If our algorithm shows high variance, the following actions might help:

1. Use fewer features. Using a feature selection technique may be useful, and decrease the over-fitting of the
estimator.

2. Use more training samples. Adding training samples can reduce the effect of over-fitting, and lead to improve-
ments in a high variance estimator.

3. Increase Regularization. Regularization is designed to prevent over-fitting. In a high-variance model, increas-
ing regularization can lead to better results.

These choices become very important in real-world situations. For example, due to limited telescope time, astronomers
must seek a balance between observing a large number of objects, and observing a large number of features for each
object. Determining which is more important for a particular learning task can inform the observing strategy that
the astronomer employs. In a later exercise, we will explore the use of learning curves for the photometric redshift
problem.
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CHAPTER 4

Classification: Learning Labels of
Astronomical Sources

Modern astronomy is concerned with the study and characterization of distant objects such as stars1, galaxies2, or
quasars3. Objects can often be very quickly characterized through detailed measurements of their optical spectrum4.
A spectrum is a measure of the photon flux (that is, the number of photons per second) as a function of photon
frequency or wavelength.

The above spectrum is that of the star Vega, the brightest star in the northern constellation Lyra. Its surface is at about
9600 degrees Kelvin, and its spectrum is roughly that of a 9600K black-body5, with absorption due to molecules in its
atmosphere. Because of the quantum mechanical properties of atoms, different atoms can absorb light at only specific,
discrete wavelengths. Because of this fact, characteristic patterns in the spectrum of a distant star can be used to infer
its chemical composition!

In the spectrum above, the deepest of these absorption spikes are due to the energy levels of Hydrogen. From exam-
ination of high-resolution spectra like this one, one can learn a lot about the physical processes at work in a distant
astronomical source. Unfortunately, spectra like these are very time-consuming and expensive to obtain, especially for
very faint objects. For this reason, astronomers have long observed objects through broad-band filters. For the u-band
filter shown above, the flux is given by
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(�) is the flux density of the spectrum at wavelength �. For historical
reasons, astronomers report the flux using the magnitude system, where the magnitude is defined by
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The denominator is a normalization constant, measured in Janskys. To reduce the uncertainty associated with absolute
calibration from telescope to telescope or from night to night, astronomers generally work in terms of the color,

1http://en.wikipedia.org/wiki/Star
2http://en.wikipedia.org/wiki/Galaxy
3http://en.wikipedia.org/wiki/Quasar
4http://en.wikipedia.org/wiki/Spectrum
5http://en.wikipedia.org/wiki/Black_body
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Figure 4.1: The spectrum of the star Vega (↵-Lyr) with the five filters from the Sloan Digital Sky Survey (SDSS),
which are denoted by the letters u (ultraviolet), g (green), r (red), i (infrared), and z (infrared).

defined as the difference of magnitudes between two different filter bands. Subtracting two magnitudes reduces this
uncertainty. For example, an observation of the star Vega above will consist of a vector four numbers: [u-g, g-r,
r-i, i-z].

With the difficulty of obtaining informative spectra, and the relative ease of obtaining color information, machine-
learning tasks in Astronomy are often based on a small spectroscopic training set, which is applied to a larger set of
photometric observations with unknown classification. We’ll examine a few of these situations here.

4.1 Motivation: Why is this Important?

The study of quasars, an amalgamation of the words “quasi-stellar radio source”, has led to many advances in our
understanding of fundamental physics. Quasars, also commonly referred to as QSOs (Quasi-Stellar Objects) or AGNs
(Active Galactic Nuclei) are galaxies which contain supermassive black holes at their core. These black holes can
weigh-in at over 10 billion times the mass of our sun, and can be luminous enough to out-shine their entire galaxy.
Here we show three different objects, chosen from among the millions of sources catalogued by the Sloan Digital Sky
Survey6:

The featured object is at the center of each image. On the left is a star, in the center is a galaxy, and on the right is a
distant quasar. From these images alone, it would be impossible to distinguish between the star and the quasar: both
are unresolved point-sources of similar apparrent brightness. If a spectrum were available, distinguishing between
them could be accomplished rather straightforwardly, but spectra are not always available. Using multi-color photo-
metric information, rather than just a single image, however, this task becomes feasible. The goal here is to design
a machine-learning algorithm which can accurately distinguish stars from quasars based on multi-color photometric
measurements.

6http://www.sdss.org
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4.2 Star-Quasar Classification: Naive Bayes

Note: The information in this section is available in an interactive notebook
07_classification_example.ipynb, which can be viewed using iPython notebook7. An online static
view can be seen here8.

In the folder $TUTORIAL_HOME/data/sdss_colors, there is a script fetch_data.py which will download
the colors of over 700,000 stars and quasars from the Sloan Digital Sky Survey. 500,000 of them are training data,
spectroscopically identified as stars or quasars. The remaining 200,000 have been classified based on their photometric
colors.

Here we will use a Naive Bayes estimator to classify the objects. First, we will construct our training data and test data
arrays:

>>> import numpy as np

>>> train_data = np.load(’data/sdss_colors/sdssdr6_colors_class_train.npy’)
>>> test_data = np.load(’data/sdss_colors/sdssdr6_colors_class.200000.npy’)

Now we must put these into arrays of shape (n_samples, n_features) in order to pass them to routines in
scikit-learn. Training samples with zero-redshift are stars, while samples with positive redshift are quasars:

>>> X_train = np.vstack([train_data[’u-g’],
... train_data[’g-r’],
... train_data[’r-i’],
... train_data[’i-z’]]).T
>>> y_train = (train_data[’redshift’] > 0).astype(int)
>>> X_test = np.vstack([test_data[’u-g’],
... test_data[’g-r’],
... test_data[’r-i’],
... test_data[’i-z’]]).T
>>> y_test = (test_data[’label’] == 0).astype(int)

Notice that we’ve set this up so that quasars have y = 1, and stars have y = 0. Now we’ll set up a Naive Bayes
classifier. This will fit a four-dimensional uncorrelated gaussian to each distribution, and from these gaussians quickly
predict the label for a test point:

>>> from sklearn import naive_bayes
>>> gnb = naive_bayes.GaussianNB()
>>> gnb.fit(X_train, y_train)
>>> y_pred = gnb.predict(X_test)

7http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
8http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/07_classification_example.ipynb
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Let’s check our accuracy. This is the fraction of labels that are correct:

>>> accuracy = float(np.sum(y_test == y_pred)) / len(y_test)
>>> print accuracy
0.617245

We have 61% accuracy. Not very good. But we must be careful here: the accuracy does not always tell the whole
story. In our data, there are many more stars than quasars

>>> print np.sum(y_test == 0)
186721
>>> print np.sum(y_test == 1)
13279

Stars outnumber Quasars by a factor of 14 to 1. In cases like this, it is much more useful to evaluate the fit based on
precision and recall. Because there are many fewer quasars than stars, we’ll call a quasar a positive label and a star a
negative label. The precision asks what fraction of positively labeled points are correctly labeled:

precision =

True Positives

True Positives + False Positives

The recall asks what fraction of positive samples are correctly identified:

recall =

True Positives

True Positives + False Negatives

We can calculate this for our results as follows:

>>> TP = np.sum((y_pred == 1) & (y_test == 1))
>>> FP = np.sum((y_pred == 1) & (y_test == 0))
>>> FN = np.sum((y_pred == 0) & (y_test == 1))
>>> print TP / float(TP + FP) # precision

0.142337086782
>>> print TP / float(TP + FN) # recall

0.948113562768

For convenience, these can be computed using the tools in the metrics sub-package of scikit-learn:

>>> from sklearn import metrics
>>> metrics.precision_score(y_test, y_pred)
0.14233708678153123
>>> metrics.recall_score(y_test, y_pred)
0.94811356276828074

Another useful metric is the F1 score, which gives a single score based on the precision and recall for the class:

F1 = 2

precision ⇤ recall
precision + recall

In a perfect classification, the precision, recall, and F1 score are all equal to 1.

>>> metrics.f1_score(y_test, y_pred)
0.24751550658108151

For convenience, sklearn.metrics provides a function that computes all of these scores, and returns a nicely
formatted string. For example:
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>>> print metrics.classification_report(y_test, y_pred, target_names=[’Stars’, ’QSOs’])
precision recall f1-score support

Stars 0.99 0.59 0.74 186721
QSOs 0.14 0.95 0.25 13279

avg / total 0.94 0.62 0.71 200000

We see that for Gaussian Naive Bayes, our QSO recall is fairly good: we are correctly identifying 95% of all quasars.
The precision, on the other hand, is much worse. Of the points we label quasars, only 14% of them are correctly
labeled. This low precision leads to an F1-score of only 0.25. This is not an optimal classification of our data.
Apparently Naive Bayes is a bit too naive for this problem.

Later, in Exercise #1 (page 47), we will apply a more sophisticated learning method to this task, which will potentially
improve on these results.
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CHAPTER 5

Regression: Photometric Redshifts of
Galaxies

Another important learning task in astronomy is the problem of determining redshifts1 of distant galaxies. In the
current standard cosmological model, the universe began nearly 14 billion years ago, in an explosive event commonly
known as the Big Bang. Since then, the very fabric of space has been expanding2, so that distant galaxies appear to be
moving away from us at very high speeds. The uniformity of this expansion means that there is a relationship between
the distance to a galaxy, and the speed that it appears to be receeding from us (this relationship is known as Hubble’s
Law3, named after Edwin Hubble). This recession speed leads to a shift in the frequency of photons, very similar to the
more familiar doppler shift4 that causes the pitch of a siren to change as an emergency vehicle passes by. If a galaxy
or star were moving toward us, its light would be shifted to higher frequencies, or blue-shifted. Because the universe
is expanding away from us, distant galaxies appear to be red-shifted: their photons are shifted to lower frequencies.

In cosmology, the redshift is measured with the parameter z, defined in terms of the observed wavelength �

obs

and the
emitted wavelength �

em

:

�

obs

= (1 + z)�

em

When a spectrum can be obtained, determining the redshift is rather straight-forward: if you can localize the spectral
fingerprint of a common element, such as hydrogen, then the redshift can be computed using simple arithmetic.
But similarly to the case of Star/Quasar classification, the task becomes much more difficult when only photometric
observations are available.

Because of the spectrum shift, an identical source at different redshifts will have a different color through each pair of
filters. See the following figure:

At redshift z = 0.0, the spectrum is bright in the u and g filters, but dim in the i and z filters. At redshift z = 0.8, the
opposite is the case. This suggests the possibility of determining redshift from photometry alone. The situation is com-
plicated by the fact that each individual source has unique spectral characteristics, but nevertheless, these photometric

redshifts are often used in astronomical applications.
1http://en.wikipedia.org/wiki/Redshift
2http://en.wikipedia.org/wiki/Expansion_of_space
3http://en.wikipedia.org/wiki/Hubble_expansion
4http://en.wikipedia.org/wiki/Doppler_shift
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Figure 5.1: The spectrum of the star Vega (↵-Lyr) at three different redshifts. The SDSS ugriz filters are shown in gray
for reference.

5.1 Motivation: Dark Energy, Dark Matter, and the Fate of the Uni-
verse

The photometric redshift problem is very important. Future astronomical surveys hope to image trillions of very
faint galaxies, and use this data to inform our view of the universe as a whole: its history, its geometry, and its fate.
Obtaining an accurate estimate of the redshift to each of these galaxies is a pivotal part of this task. Because these
surveys will image so many extremely faint galaxies, there is no possibility of obtaining a spectrum for each one. Thus
sophisticated photometric redshift codes will be required to advance our understanding of the Universe, including
more precisely understanding the nature of the dark energy that is currently accelerating the cosmic expansion.

5.2 A Simple Method: Decision Tree Regression

Note: The information in this section is available in an interactive notebook 08_regression_example.ipynb,
which can be viewed using iPython notebook5. An online static view can be seen here6.

Here we’ll take an extremely simple approach to the photometric redshift problem, using a decision tree. In the folder
$TUTORIAL_HOME/data/sdss_photoz, there is a script fetch_data.py which will download the colors
of 400,000+ galaxies from the Sloan Digital Sky Survey. This script also includes a python implementation of the
SQL query used to construct this data. This template can be modified to download more features if desired. Before
executing the example below, run fetch_data.py to download the colors and redshifts.

5http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
6http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/08_regression_example.ipynb
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First we will load this data, shuffle it in preparation for later, and arrange the colors in an array of shape
(n_samples, n_features):

>>> import numpy as np

>>> data = np.load(’data/sdss_photoz/sdss_photoz.npy’)
>>> N = len(data)
>>> X = np.zeros((N, 4))
>>> X[:, 0] = data[’u’] - data[’g’]
>>> X[:, 1] = data[’g’] - data[’r’]
>>> X[:, 2] = data[’r’] - data[’i’]
>>> X[:, 3] = data[’i’] - data[’z’]
>>> z = data[’redshift’]

Next we’ll split the data into two samples: a training sample and a test sample which we’ll use to evaluate our training:

>>> Ntrain = 3 * N / 4
>>> Xtrain = X[:Ntrain]
>>> ztrain = z[:Ntrain]
>>> Xtest = X[Ntrain:]
>>> ztest = z[Ntrain:]

Now we’ll use the scikit-learn DecisionTreeRegressor method to train a model and predict redshifts for the
test set based on a 20-level decision tree:

>>> from sklearn.tree import DecisionTreeRegressor
>>> clf = DecisionTreeRegressor(
>>> clf.fit(Xtrain, ztrain)
>>> zpred = clf.predict(Xtest)

To judge the efficacy of prediction, we can compute the root-mean-square difference between the true and predicted
values:

>>> rms = np.sqrt(np.mean((ztest - zpred) ** 2))
>>> print rms
0.221409442926

Our RMS error is about 0.22. This is pretty good for such an unsophisticated learning algorithm, but better algorithms
can improve on this. The biggest issue here are the catastrophic errors, where the predicted redshift is extremely far
from the prediction:

>>> print len(ztest)
102798
>>> print np.sum(abs(ztest - zpred) > 1)
1538

About 1.5% of objects have redshift estimates which are off by greater than 1. This sort of error in redshift determi-
nation is very problematic for high-precision cosmological studies. This can be seen in a scatter plot of the predicted
redshift versus the true redshift for the test data:

Later, in Exercise #2 (page 48), we will attempt to improve on this by optimizing the parameters of the decision tree.

In practice, the solutions to the photometric redshift problem can benefit from approaches that use physical intuition
as well as machine learning tools. For example, some solutions involve the use of libraries of synthetic galaxy spectra
which are known to be representative of the true galaxy distribution. This extra information can be used either directly,
in a physically motivated analysis, or can be used to generate a larger suite of artificial training instances for a pure
machine learning approach.

5.2. A Simple Method: Decision Tree Regression 37



Astronomy with scikit-learn, Release Scipy2012

Figure 5.2: The true and predicted redshifts of 102,798 SDSS galaxies, using a simple decision tree regressor. Notice
the presece of catastrophic outliers: those galaxies whose predicted redshifts are extremely far from the true value.
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CHAPTER 6

Dimensionality Reduction of
Astronomical Spectra

The Sloan Digital Sky Survey1 is a photometric and spectroscopic survey which has operated since the year 2000, and
has resulted in an unprecedented astronomical database. The database contains photometric observations like those
we explored in the previous sections, but also includes a large number of spectra of various objects. These spectra
are n-dimensional data vectors (generally, n ⇡ 4000) for each observed object, where each observation in the vector
measures the flux of a particular wavelength of light.

Because of the large dimensionality of this data, visualization of the dataset becomes very challenging. This is where
unsupervised dimensionality reduction methods can be useful. One of the most commonly used dimensionality reduc-
tion methods in astronomy is Principal Component Analysis (PCA)2. We won’t go through the mathematical details
here, but PCA essentially seeks dimensions of the input data which contain the bulk of the variability present in the
data. The model has this form:

~x

i

= ~µ+

nX

j=1

a

ij

~v

j

Here ~x

i

represents an individual spectrum. ~µ is the mean spectrum for the dataset. The remaining term encodes the
contributions of each of the eigenvectors ~v

j

. The eigenvectors are generally arranged so that those with the smallest
j contain the most signal-to-noise, and are the most important vectors in reconstructing the spectra. For this reason,
truncating the sum at some m < n can still result in a faithful representation of the input.

For astronomical spectra, the result is that the first few coefficientts a

ij

of each spectrum ~x

i

encode a good low-
dimensional representation of the spectrum. We’ll use this fact to visualize this data in a meaningful way.

6.1 SDSS Spectral Data

Note: The information in this section is available in an interactive notebook
09_dimensionality_example.ipynb, which can be viewed using iPython notebook3. An online static
view can be seen here4.

1http://www.sdss.org/
2http://scikit-learn.org/stable/modules/decompositions.html#principal-component-analysis-pca
3http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
4http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/09_dimensionality_example.ipynb
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In the directory $TUTORIAL_HOME/data/sdss_spectra/, you’ll find the script which fetches a set of spectra
from the Sloan Digital Sky Survey. Each individual spectrum is at a particular redshift, and can have data missing in
certain spectral regions. So that this doesn’t affect our analysis, the spectra have been de-redshifted and the gaps have
been filled using the PCA-based algorithm described in 5. In the process of shifting and gap-filling, the spectra have
been down-sampled so that the number of attributes is n = 1000.

Once the dataset is downloaded, it can be read-in as follows:

>>> import numpy as np

>>> data = np.load(’spec4000_corrected.npz’)
>>> data.files
[’y’, ’X’, ’z’, ’wavelengths’]
>>> data[’X’].shape
(4000, 1000)
>>> print data[’labels’]
[’unknown’ ’star’ ’absorption galaxy’ ’galaxy’ ’emission galaxy’
’narrow-line QSO’ ’broad-line QSO’ ’sky’ ’Hi-z QSO’ ’Late-type star’]

The variable X contains 4000 spectra, each with 1000 attributes. In addition, the file includes a classification code y,
and redshift z for each spectrum, and an array wavelengths which can aid in plotting spectra. Let’s plot a few of
these to see what they look like, making sure to choose a representative of each of the interesting classes:

>>> import pylab as pl

>>> def plot_spectral_types(data):
... X = data[’X’]
... y = data[’y’]
... wavelengths = data[’wavelengths’]
... labels = data[’labels’]

... for i_class in (2, 3, 4, 5, 6):

... i = np.where(y == i_class)[0][0]

... l = pl.plot(wavelengths, X[i] + 20 * i_class)

... c = l[0].get_color()

... pl.text(6800, 2 + 20 * i_class, labels[i_class], color=c)

... pl.subplots_adjust(hspace=0)

... pl.xlabel(’wavelength (Angstroms)’)

... pl.ylabel(’flux + offset’)

... pl.title(’Sample of Spectra’)

calling plot_spectral_types(data) gives the following figure:

There are 4000 spectra in this file, each with 1000 attributes. Visualizing a dataset of this size can be very difficult.
We could plot all 4000 spectra as we did above, but the plot would quickly become too complicated. As a first step, it
might be helpful to ask what the average spectrum looks like. To do this, we’ll plot the mean, but first we’ll normalize
the spectra. Because the spectra represent galaxies at distances that range over several hundreds of light-years, their
total flux varies greatly. Thus it will help if we normalize the spectra. For this we’ll use the scikit-learn preprocessing
module. We’ll then plot both the mean and standard deviation to give us an idea of the data we’re working with:

>>> from sklearn.preprocessing import normalize
>>>
>>> def plot_mean_std(data):
... X = data[’X’]
... wavelengths = data[’wavelengths’]
...

5 C.W. Yip et al. Spectral Classification of Quasars in the Sloan Digital Sky Survey: Eigenspectra, Redshift, and Luminosity
Effects. Astronomical Journal 128:6, 2004.
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Figure 6.1: A sample from among the most interesting classes of object. These objects are classified based on their
emission and absorption characteristics.

... X = normalize(X)

... mu = X.mean(0)

... std = X.std(0)

... pl.plot(wavelengths, mu, color=’black’)

... pl.fill_between(wavelengths, mu - std, mu + std, color=’#CCCCCC’)

... pl.xlim(wavelengths[0], wavelengths[-1])

... pl.ylim(0, 0.06)

... pl.xlabel(’wavelength (Angstroms)’)

... pl.ylabel(’scaled flux’)

... pl.title(’Mean Spectrum’)

Calling plot_mean_std(data) gives the following figure:

The interesting part of the data is in the gray shaded regions: how do spectra vary from the mean, and how can this
variation tell us about their physical properties? One option to visualize this would be to scatter-plot random pairs of
observations from each spectrum. We’ll create a function to visualize this:

>>> def plot_random_projection(data, rseed=25255):
... # rseed is chosen to emphasize correlation

... np.random.seed(rseed)

... i1, i2 = np.random.randint(1000, size=2)

...

... # create a formatter which works for our labels

... format = pl.FuncFormatter(lambda i, *args: labels[i].replace(’ ’, ’\n’))

...

... X = normalize(data[’X’])

... y = data[’y’]

... labels = data[’labels’]

6.1. SDSS Spectral Data 41



Astronomy with scikit-learn, Release Scipy2012

Figure 6.2: The mean and standard deviation of the normalized spectra. Some of the largest variation is found at wave-
lengths at which Hydrogen absorbs and emits photons (Hydrogen is by far the most abundant atom in the universe).
For example, the line at 6563 is known as Hydrogen-↵, and is often seen in emission (spiking up) in quasars and other
active galaxies.
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... wavelengths = data[’wavelengths’]

...

... pl.scatter(X[:, i1], X[:, i2], c=y, s=4, lw=0,

... vmin=2, vmax=6, cmap=pl.cm.jet)

... pl.colorbar(ticks = range(2, 7), format=format)

... pl.xlabel(’wavelength = %.1f’ % wavelengths[i1])

... pl.ylabel(’wavelength = %.1f’ % wavelengths[i2])

... pl.title(’Random Pair of Spectra Bins’)

Calling plot_random_projection(data) gives the following plot:

Figure 6.3: A scatter-plot of a random pair of observations from the data. These show a clear correlation.

There is a clear correlation between these two measurements. That is, if you know the value of one, then you could
quite accurately predict the value of the other. This shows us that some of the spectral bins do not add much in-
formation, and can be ignored. One could imagine proceeding by trial and error, plotting pairs of points and seeing
which ones provide the most interesting information, but this would be very tedious. Instead, we can use an automated
technique for dimensionality reduction, one well-known example of which is Principal Component Analysis.

6.2 Principal Component Analysis

Principal Component Analysis (PCA) is an often-used tool in astronomy and other data-intensive sciences. In a
sense, it automates the trial-and-error process discussed in the previous section, and finds the most interesting linear
combinations of attributes, so that high-dimensional data can be visualized in a 2D or 3D plot. Scikit-learn has methods
to compute PCA and several variants. Classic PCA (sklearn.decomposition.PCA6) is based on an eigenvalue
decomposition of the data covariance, so that for N points, the computational cost grows as O[N

3
]. This means that

6http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA

6.2. Principal Component Analysis 43

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA


Astronomy with scikit-learn, Release Scipy2012

for large datasets like the current one, the fit can be very slow. You can try it as follows, but the computation may take
up to several minutes for this dataset:

>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=4)
>>> X = normalize(data[’X’])
>>> X_projected = pca.fit_transform(X) # warning: this takes a long time!

Fortunately, scikit-learn has an alternative method that is much faster. The speed comes at a price: it is based on
random projections, so the results are not as robust as the normal method. But for tasks such as ours where we are
seeking only a few of a large number of eigenvectors, it performs fairly well. To keep our results consistent between
runs, we’ll explicitly set the random seed for the fit. You should repeat this with several different random seeds to
convince yourself that the results are consistent:

>>> from sklearn.decomposition import RandomizedPCA
>>> rpca = RandomizedPCA(n_components=4, random_state=0)
>>> X_proj = rpca.fit_transform(X)
>>> X_proj.shape
(4000, 4)

X_proj is now a reduced-dimension representation of X, where the lower-index columns are the most important
dimensions. We can visualize the spectra now using the first two columns:

>>> def plot_PCA_projection(data, rpca):
... y = data[’y’]
...

... # create a formatter which works for our labels

... labels = data[’labels’]

... format = pl.FuncFormatter(lambda i, *args: labels[i].replace(’ ’, ’\n’))

...

... X_proj = rpca.transform(X)

... pl.scatter(X_proj[:, 0], X_proj[:, 1], c=y, s=4, lw=0, vmin=2, vmax=6, cmap=pl.cm.jet)

... pl.colorbar(ticks = range(2, 7), format=format)

... pl.xlabel(’coefficient 1’)

... pl.ylabel(’coefficient 2’)

... pl.title(’PCA projection of Spectra’)

Calling this function as plot_PCA_projection(data, rpca) gives the following plot:

We now have a two-dimensional visualization, but what does this tell us? Looking at the PCA model in the equation
above, we see that each component is associated with an eigenvector, and this plot is showing a

i1 and a

i2 where

~s

i

⇡ ~µ+ a

i1 ~v1 + a

i2 ~v2

Visualizing the eigenvectors ~v

j

can give insight into what these components mean:

>>> def plot_eigenvectors(data, rpca):
... wavelengths = data[’wavelengths’]
...

... l = pl.plot(wavelengths, rpca.mean_ - 0.15)

... c = l[0].get_color()

... pl.text(7000, -0.16, "mean", color=c)

...

... for i in range(4):

... l = pl.plot(wavelengths, rpca.components_[i] + 0.15 * i)

... c = l[0].get_color()

... pl.text(7000, -0.01 + 0.15 * i, "component %i" % (i + 1), color=c)
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Figure 6.4: A scatter-plot of the first two principal components of the spectra.

...

... pl.ylim(-0.2, 0.6)

... pl.xlabel(’wavelength (Angstroms)’)

... pl.ylabel(’scaled flux + offset’)

... pl.title(’Mean Spectrum and Eigen-spectra’)

Calling this function as plot_eivenvectors(data, rpca) gives the following plot:

We see that the first eigenspectrum (component 1) tells us about the relative difference in flux between low wavelengths
and high wavelengths - that is, the color of the spectrum. Component 2 tells us a lot about the emission and absorption
characteristics in the various lines, and also in the so-called “4000 angstrom break” due to Hydrogen absorption.
Detailed analysis of these components and eigenspectra can lead to much physical insight about the galaxies in the fit
(See, for example 1).

Nevertheless, there are some weaknesses here. First of all, PCA does not do a good job of separating out galaxies
with different emission characteristics. We’d hope for a projection which reflects the fact that narrow spectral features
are very important in the classification. PCA does not do this. Later, in Exercise 3 (page 49), we’ll explore some
alternative nonlinear dimensionality reduction techniques which will address this deficiency of PCA.

6.3 References
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Figure 6.5: The mean spectrum and the first four eigenvectors of the spectral data.
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CHAPTER 7

Exercises: Taking it a step further

Here we describe three exercises that will walk you through more advanced approaches to the classification, regression,
and dimensionality reduction tasks outlined in the previous sections.

Before beginning the exercises, be sure you have downloaded the tutorial source as described in the setup section.
For each exercise, there are three files. In $TUTORIAL_HOME/skeletons, there is a skeleton script which can
be filled-in to complete the exercise. In $TUTORIAL_HOME/solutions you can find a completed version of the
exercise files. $TUTORIAL_HOME/notebooks has iPython notebook1 files which can be used to interactively
complete the tutorials.

Using the notebook files is the preferred way to complete the tutorial. If ipython notebook is unavailable, the files in
the skeletons and solutions directory can be used. Begin by copying the content of the skeletons folder to
your own workspace:

% cp -r skeletons workspace

You can then edit the contents of workspace without losing the original files. You must also make sure you have run
the fetch_data.py scripts in the appropriate subdirectory of $TUTORIAL_HOME/data. Next start the ipython
interpreter and run the script with:

In [1]: %run workspace/exercise*.py datadir

If an exception is triggered, you can type %debug to fire-up an ipdb session.

Each exercise contains the necessary import statements, data loading, and code to evaluate the predictive accuracy of
the model being used. The remaining code must be filled-in by the user. These places are marked by the comment
#TODO. Each exercise also has in-line descriptions which go over the details of each sub-task.

7.1 Exercise 1: Photometric Classification with GMM

Note: The information in this section is available in an interactive notebook 10_exercise01.ipynb, which can
be viewed and modified using iPython notebook2. An online static view can be seen here3. This requires the sdss
colors data, which can be downloaded as described in Tutorial Setup and Installation (page 2).

1http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
2http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
3http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/10_exercise01.ipynb
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In this exercise, you will improve on the results of the classification example described in the classification section.
We previously used a simple Gaussian Naive Bayes classifier to distinguish between stars and quasars. Here we will
use Gaussian Mixture Models4 to recreate the Gaussian Naive Bayes classifier, and then tweak the parameters of these
mixture models, evaluating them using a cross-validation set, and attempt to arrive at a better classifier.

The overall goal of the task is to improve the quasar classifier, measuring its performance using the precision, recall,
and F1-score.

This task is broken into several parts:

1. Re-implement Gaussian Naive Bayes using Gaussian Mixture models. This involves training two single-
component GMMs, calculating the priors for each class, and using these to compute likelihoods. This can
be compared directly with the Gaussian Naive Bayes results to check that the implementation is correct.

2. Experiment with various covariance types and numbers of components to optimize the classifier using the cross-
validation set.

3. Once you’ve converged on a good set of GMM parameters, predict the labels for the test set, and compare this
with the labels from the literature.

the ipython command is:

In [1]: %run workspace/exercise_01.py data/sdss_colors

Alternatively, the ipython notebook file is found in

notebooks/10_exercise01.ipynb (static view5)

7.2 Exercise 2: Photometric redshifts with Decision Trees

Note: The information in this section is available in an interactive notebook 11_exercise02.ipynb, which can
be viewed and modified using iPython notebook6. An online static view can be seen here7. This requires the sdss
photoz data, which can be downloaded as described in Tutorial Setup and Installation (page 2).

In this exercise, you will seek to improve the results of the photometric redshift regression problem described in the
regression section. This exercise will draw heavily on the concepts of bias and variance, using the learning curve plots
introduced in section 3 of this tutorial.

There are two goals of this exercise:

1. Find the best possible decision tree classifier for the data

2. Decide what the best use of future resources is. Should the astronomers seek to observe more objects (i.e.
increase the number of training samples), or record more observations for each object (i.e. increase the number
of features)?

The exercise is broken into the following tasks:

1. Compute the training error and cross-validation error as a function of the max_depth parameter used in the
Decision Tree Classifier.

2. Compute the training error and cross-validation error as a function of the number of training samples.

3. Repeat these two tasks, recording the outlier rate rather than the rms error.
4http://scikit-learn.org/0.6/modules/mixture.html
5http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/10_exercise01.ipynb
6http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html
7http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/10_exercise02.ipynb
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4. Analyze these results: should future observations focus on increasing the number of samples, or increasing the
number of features? Does this answer change depending on whether the rms error or outlier rate is the metric
used?

the ipython command is:

In [1]: %run workspace/exercise_02.py data/sdss_photoz/

Althernatively, the ipython notebook file is found in

notebooks/11_exercise02.ipynb (static view8)

7.3 Exercise 3: Dimensionality Reduction of Spectra

Note: The information in this section is available in an interactive notebook 12_exercise03.ipynb, which can
be viewed using iPython notebook9. An online static view can be seen here10. This requires the sdss spectra data,
which can be downloaded as described in Tutorial Setup and Installation (page 2).

In this exercise, you will use several dimensionality reduction techniques to view low-dimensional projections of
galaxy & quasar spectra from the Sloan Digital Sky Survey. This exercise is much less quantitative than the previous
ones: it mainly will help you to get a qualitative sense of the characteristics of these learning methods.

There is a programming section, followed by an experimentation section. The skeleton is set up to use command-line
options to compare different sets of parameters

7.3.1 Programming

The file has several places with “TODO” marked. In these, you will use the specified unsupervised method to project
the data X into the lower-dimensional X_proj.

1. Use sklearn.decomposition.RandomizedPCA11 to project the data

the ipython command is:

In [1]: %run workspace/exercise_03.py data/sdss_spectra/ -m pca

Note the argument -m which specifies the method to use.

2. Use sklearn.manifold.LocallyLinearEmbedding12 with method=’standard’ to project the
data.

the ipython command is:

In [1]: %run workspace/exercise_03.py data/sdss_spectra/ -m lle

3. Use sklearn.manifold.LocallyLinearEmbedding13 with method=’standard’ to project the
data.

the ipython command is:

8http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/10_exercise02.ipynb
9http://ipython.org/ipython-doc/stable/interactive/htmlnotebook.html

10http://nbviewer.ipython.org/url/astroml.github.com/sklearn_tutorial/_downloads/10_exercise03.ipynb
11http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.RandomizedPCA.html#sklearn.decomposition.RandomizedPCA
12http://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding
13http://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding
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In [1]: %run workspace/exercise_03.py data/sdss_spectra/ -m mlle

4. Use sklearn.manifold.Isomap14 to project the data.

the ipython command is:

In [1]: %run workspace/exercise_03.py data/sdss_spectra/ -m isomap

7.3.2 Experimentation

Your goal is to find a projection that does a good job of separating the various classes of spectra, and lays them out in
a way that might allow intuitive evaluation of the relationships between points. The script is set-up as a command-line
interface. You should address the following questions:

1. How sensitive is PCA to the set of data used? To the number of training points? You can test this out as follows:

In [1]: %run workspace/exercise_03.py data/sdss_spectra -m pca -n 1000 -s

This will perform PCA on a subset of 1000 points. -s indicates that the data should be shuffled, so that the set
of points is different every time. How stable is the projection between different subsets of the data? How does
the projection change as the number of points is increased?

2. Address the same questions with LLE, MLLE, and Isomap. Which of these manifold methods appears to give
the most stable results?

3. Now we can vary the number of neighbors used with LLE, MLLE, and Isomap. This is accomplished as follows:

In [1]: %run workspace/exercise_03.py data/sdss_spectra -m lle -k 20

This call will execute LLE with 20 neighbors. Try this for several values of k. How does the number of neighbors
change the projection? Among LLE, MLLE, and Isomap, which produces the most stable results as the number
of neighbors are changed?

4. Finally, we’ll test the effects of normalization. This can be done as follows:

In [1]: %run workspace/exercise_03.py data/sdss_spectra -N l2

this will perform PCA with L2-normalization. The other options are -N l1 for L1-normalization, and -N
none for no normalization. Normalization has the effect of bringing all the spectra closer together: unnormal-
ized spectra may be very bright (for nearby objects) or very dim (for far away objects). Normalization corrects
for this source of variance in the data. How do the projected results change as you vary the normalization?

5. By now, you should have an idea of which method and which combination of parameters give the best qualitative
separation between the points. Re-run this method using the full ‘n‘=4000 dataset now:

In [1]: %run python workspace/exercise_03.py data/sdss_spectra -n 4000 -m [method] [other options]

This should give you a projection of the data that gives a good visualization of the relationship between points.
An astronomer may go further and try to develop rough cut-offs that would give a broad classification to an
unlabeled test point. This sort of procedure could be used as the first step of a physically-motivated classification
pipeline, or to flag potentially interesting objects for quick followup.

14http://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap
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CHAPTER 8

Code examples

Applications to experiment with scikit-learn tools.

Figure 8.1: Tutorial Diagrams (page 51)

8.1 Tutorial Diagrams

This script plots the flow-charts used in the scikit-learn tutorials.

•
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•

•

Python source code: plot_ML_flow_chart.py

import numpy as np

import pylab as pl

from matplotlib.patches import Circle, Rectangle, Polygon, Arrow, FancyArrow

def create_base(box_bg = ’#CCCCCC’,
arrow1 = ’#88CCFF’,
arrow2 = ’#88FF88’,
supervised=True):

fig = pl.figure(figsize=(9, 6), facecolor=’w’)
ax = pl.axes((0, 0, 1, 1),

xticks=[], yticks=[], frameon=False)
ax.set_xlim(0, 9)
ax.set_ylim(0, 6)

patches = [Rectangle((0.3, 3.6), 1.5, 1.8, zorder=1, fc=box_bg),
Rectangle((0.5, 3.8), 1.5, 1.8, zorder=2, fc=box_bg),
Rectangle((0.7, 4.0), 1.5, 1.8, zorder=3, fc=box_bg),

Rectangle((2.9, 3.6), 0.2, 1.8, fc=box_bg),
Rectangle((3.1, 3.8), 0.2, 1.8, fc=box_bg),
Rectangle((3.3, 4.0), 0.2, 1.8, fc=box_bg),

Rectangle((0.3, 0.2), 1.5, 1.8, fc=box_bg),

Rectangle((2.9, 0.2), 0.2, 1.8, fc=box_bg),

Circle((5.5, 3.5), 1.0, fc=box_bg),

Polygon([[5.5, 1.7],
[6.1, 1.1],
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[5.5, 0.5],
[4.9, 1.1]], fc=box_bg),

FancyArrow(2.3, 4.6, 0.35, 0, fc=arrow1,
width=0.25, head_width=0.5, head_length=0.2),

FancyArrow(3.75, 4.2, 0.5, -0.2, fc=arrow1,
width=0.25, head_width=0.5, head_length=0.2),

FancyArrow(5.5, 2.4, 0, -0.4, fc=arrow1,
width=0.25, head_width=0.5, head_length=0.2),

FancyArrow(2.0, 1.1, 0.5, 0, fc=arrow2,
width=0.25, head_width=0.5, head_length=0.2),

FancyArrow(3.3, 1.1, 1.3, 0, fc=arrow2,
width=0.25, head_width=0.5, head_length=0.2),

FancyArrow(6.2, 1.1, 0.8, 0, fc=arrow2,
width=0.25, head_width=0.5, head_length=0.2)]

if supervised:
patches += [Rectangle((0.3, 2.4), 1.5, 0.5, zorder=1, fc=box_bg),

Rectangle((0.5, 2.6), 1.5, 0.5, zorder=2, fc=box_bg),
Rectangle((0.7, 2.8), 1.5, 0.5, zorder=3, fc=box_bg),
FancyArrow(2.3, 2.9, 2.0, 0, fc=arrow1,

width=0.25, head_width=0.5, head_length=0.2),
Rectangle((7.3, 0.85), 1.5, 0.5, fc=box_bg)]

else:
patches += [Rectangle((7.3, 0.2), 1.5, 1.8, fc=box_bg)]

for p in patches:
ax.add_patch(p)

pl.text(1.45, 4.9, "Training\nText,\nDocuments,\nImages,\netc.",
ha=’center’, va=’center’, fontsize=14)

pl.text(3.6, 4.9, "Feature\nVectors",
ha=’left’, va=’center’, fontsize=14)

pl.text(5.5, 3.5, "Machine\nLearning\nAlgorithm",
ha=’center’, va=’center’, fontsize=14)

pl.text(1.05, 1.1, "New Text,\nDocument,\nImage,\netc.",
ha=’center’, va=’center’, fontsize=14)

pl.text(3.3, 1.7, "Feature\nVector",
ha=’left’, va=’center’, fontsize=14)

pl.text(5.5, 1.1, "Predictive\nModel",
ha=’center’, va=’center’, fontsize=12)

if supervised:
pl.text(1.45, 3.05, "Labels",

ha=’center’, va=’center’, fontsize=14)

pl.text(8.05, 1.1, "Expected\nLabel",
ha=’center’, va=’center’, fontsize=14)
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pl.text(8.8, 5.8, "Supervised Learning Model",
ha=’right’, va=’top’, fontsize=18)

else:
pl.text(8.05, 1.1,

"Likelihood\nor Cluster ID\nor Better\nRepresentation",
ha=’center’, va=’center’, fontsize=12)

pl.text(8.8, 5.8, "Unsupervised Learning Model",
ha=’right’, va=’top’, fontsize=18)

def plot_supervised(annotate=False):
create_base(supervised=True)
if annotate:

fontdict = dict(color=’r’, weight=’bold’, size=14)
pl.text(1.9, 4.55, ’X = vec.fit_transform(input)’,

fontdict=fontdict,
rotation=20, ha=’left’, va=’bottom’)

pl.text(3.7, 3.2, ’clf.fit(X, y)’,
fontdict=fontdict,
rotation=20, ha=’left’, va=’bottom’)

pl.text(1.7, 1.5, ’X_new = vec.transform(input)’,
fontdict=fontdict,
rotation=20, ha=’left’, va=’bottom’)

pl.text(6.1, 1.5, ’y_new = clf.predict(X_new)’,
fontdict=fontdict,
rotation=20, ha=’left’, va=’bottom’)

def plot_unsupervised():
create_base(supervised=False)

plot_supervised(False)
plot_supervised(True)
plot_unsupervised()
pl.show()

Total running time of the example: 0 seconds

Figure 8.2: Bias and Variance (page 54)

8.2 Bias and Variance

This script plots some simple examples of how model complexity affects bias and variance.
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•

•

•

•

Python source code: plot_bias_variance_examples.py

import numpy as np

import pylab as pl

from matplotlib import ticker
from matplotlib.patches import FancyArrow

# Suppress warnings from Polyfit (ill-conditioned fit)

import warnings

warnings.filterwarnings(’ignore’, message=’Polyfit*’)
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np.random.seed(42)

def test_func(x, err=0.5):
return np.random.normal(10 - 1. / (x + 0.1), err)

def compute_error(x, y, p):
yfit = np.polyval(p, x)
return np.sqrt(np.mean((y - yfit) ** 2))

#------------------------------------------------------------

# Plot linear regression example

np.random.seed(42)
x = np.random.random(20)
y = np.sin(2 * x)
p = np.polyfit(x, y, 1) # fit a 1st-degree polynomial to the data

xfit = np.linspace(-0.2, 1.2, 10)
yfit = np.polyval(p, xfit)

pl.scatter(x, y, c=’k’)
pl.plot(xfit, yfit)
pl.xlabel(’x’)
pl.ylabel(’y’)
pl.title(’Linear Regression Example’)

#------------------------------------------------------------

# Plot example of over-fitting and under-fitting

N = 8
np.random.seed(42)
x = 10 ** np.linspace(-2, 0, N)
y = test_func(x)

xfit = np.linspace(-0.2, 1.2, 1000)

titles = [’d = 1 (under-fit)’, ’d = 2’, ’d = 6 (over-fit)’]
degrees = [1, 2, 6]

pl.figure(figsize = (9, 3.5))
for i, d in enumerate(degrees):

pl.subplot(131 + i, xticks=[], yticks=[])
pl.scatter(x, y, marker=’x’, c=’k’, s=50)

p = np.polyfit(x, y, d)
yfit = np.polyval(p, xfit)
pl.plot(xfit, yfit, ’-b’)

pl.xlim(-0.2, 1.2)
pl.ylim(0, 12)
pl.xlabel(’house size’)
if i == 0:

pl.ylabel(’price’)

pl.title(titles[i])

pl.subplots_adjust(left = 0.06, right=0.98,
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bottom=0.15, top=0.85,
wspace=0.05)

#------------------------------------------------------------

# Plot training error and cross-val error

# as a function of polynomial degree

Ntrain = 100
Ncrossval = 100
error = 1.0

np.random.seed(0)
x = np.random.random(Ntrain + Ncrossval)
y = test_func(x, error)

xtrain = x[:Ntrain]
ytrain = y[:Ntrain]

xcrossval = x[Ntrain:]
ycrossval = y[Ntrain:]

degrees = np.arange(1, 21)
train_err = np.zeros(len(degrees))
crossval_err = np.zeros(len(degrees))

for i, d in enumerate(degrees):
p = np.polyfit(xtrain, ytrain, d)

train_err[i] = compute_error(xtrain, ytrain, p)
crossval_err[i] = compute_error(xcrossval, ycrossval, p)

pl.figure()
pl.title(’Error for 100 Training Points’)
pl.plot(degrees, crossval_err, lw=2, label = ’cross-validation error’)
pl.plot(degrees, train_err, lw=2, label = ’training error’)
pl.plot([0, 20], [error, error], ’--k’, label=’intrinsic error’)
pl.legend()
pl.xlabel(’degree of fit’)
pl.ylabel(’rms error’)

pl.gca().add_patch(FancyArrow(5, 1.35, -3, 0, width = 0.01,
head_width=0.04, head_length=1.0,
length_includes_head=True))

pl.text(5.3, 1.35, "High Bias", fontsize=18, va=’center’)

pl.gca().add_patch(FancyArrow(19, 1.22, 0, -0.1, width = 0.25,
head_width=1.0, head_length=0.05,
length_includes_head=True))

pl.text(19.8, 1.23, "High Variance", ha=’right’, fontsize=18)

#------------------------------------------------------------

# Plot training error and cross-val error

# as a function of training set size

Ntrain = 100
Ncrossval = 100
error = 1.0
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np.random.seed(0)
x = np.random.random(Ntrain + Ncrossval)
y = test_func(x, error)

xtrain = x[:Ntrain]
ytrain = y[:Ntrain]

xcrossval = x[Ntrain:]
ycrossval = y[Ntrain:]

sizes = np.linspace(2, Ntrain, 50).astype(int)
train_err = np.zeros(sizes.shape)
crossval_err = np.zeros(sizes.shape)

pl.figure(figsize=(10, 5))

for j,d in enumerate((1, 20)):
for i, size in enumerate(sizes):

p = np.polyfit(xtrain[:size], ytrain[:size], d)
crossval_err[i] = compute_error(xcrossval, ycrossval, p)
train_err[i] = compute_error(xtrain[:size], ytrain[:size], p)

ax = pl.subplot(121 + j)
pl.plot(sizes, crossval_err, lw=2, label=’cross-val error’)
pl.plot(sizes, train_err, lw=2, label=’training error’)
pl.plot([0, Ntrain], [error, error], ’--k’, label=’intrinsic error’)

pl.xlabel(’traning set size’)
if j == 0:

pl.ylabel(’rms error’)
else:

ax.yaxis.set_major_formatter(ticker.NullFormatter())

pl.legend(loc = 4)

pl.ylim(0.0, 2.5)
pl.xlim(0, 99)

pl.text(98, 2.45, ’d = %i’ % d, ha=’right’, va=’top’, fontsize=’large’)

pl.subplots_adjust(wspace = 0.02, left=0.07, right=0.95,
bottom=0.1, top=0.9)

pl.show()

Total running time of the example: 0 seconds

Figure 8.3: Linear Model Example (page 59)
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8.3 Linear Model Example

This is an example plot from the tutorial which accompanies an explanation of the support vector machine GUI.

•

•

Python source code: plot_gui_example.py

import numpy as np

import pylab as pl

import matplotlib

from sklearn import svm

def linear_model(rseed=42, Npts=30):
np.random.seed(rseed)

data = np.random.normal(0, 10, (Npts, 2))
data[:Npts / 2] -= 15
data[Npts / 2:] += 15

labels = np.ones(Npts)
labels[:Npts / 2] = -1

return data, labels

def nonlinear_model(rseed=42, Npts=30):

8.3. Linear Model Example 59



Astronomy with scikit-learn, Release Scipy2012

radius = 40 * np.random.random(Npts)
far_pts = radius > 20
radius[far_pts] *= 1.2
radius[~far_pts] *= 1.1

theta = np.random.random(Npts) * np.pi * 2

data = np.empty((Npts, 2))
data[:, 0] = radius * np.cos(theta)
data[:, 1] = radius * np.sin(theta)

labels = np.ones(Npts)
labels[far_pts] = -1

return data, labels

#------------------------------------------------------------

# Linear model

X, y = linear_model()
clf = svm.SVC(kernel=’linear’,

gamma=0.01, coef0=0, degree=3)
clf.fit(X, y)

fig = pl.figure()
ax = pl.subplot(111, xticks=[], yticks=[])
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.bone)

ax.scatter(clf.support_vectors_[:, 0],
clf.support_vectors_[:, 1],
s=80, edgecolors="k", facecolors="none")

delta = 1
y_min, y_max = -50, 50
x_min, x_max = -50, 50
x = np.arange(x_min, x_max + delta, delta)
y = np.arange(y_min, y_max + delta, delta)
X1, X2 = np.meshgrid(x, y)
Z = clf.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z = Z.reshape(X1.shape)

levels = [-1.0, 0.0, 1.0]
linestyles = [’dashed’, ’solid’, ’dashed’]
colors = ’k’
ax.contour(X1, X2, Z, levels,

colors=colors,
linestyles=linestyles)

#------------------------------------------------------------

# RBF model

X, y = nonlinear_model()
clf = svm.SVC(kernel=’rbf’,

gamma=0.001, coef0=0, degree=3)
clf.fit(X, y)

fig = pl.figure()
ax = pl.subplot(111, xticks=[], yticks=[])
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.bone, zorder=2)

8.3. Linear Model Example 60



Astronomy with scikit-learn, Release Scipy2012

ax.scatter(clf.support_vectors_[:, 0],
clf.support_vectors_[:, 1],
s=80, edgecolors="k", facecolors="none")

delta = 1
y_min, y_max = -50, 50
x_min, x_max = -50, 50
x = np.arange(x_min, x_max + delta, delta)
y = np.arange(y_min, y_max + delta, delta)
X1, X2 = np.meshgrid(x, y)
Z = clf.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z = Z.reshape(X1.shape)

levels = [-1.0, 0.0, 1.0]
linestyles = [’dashed’, ’solid’, ’dashed’]
colors = ’k’

ax.contourf(X1, X2, Z, 10,
cmap=matplotlib.cm.bone,
origin=’lower’,
alpha=0.85, zorder=1)

ax.contour(X1, X2, Z, [0.0],
colors=’k’,
linestyles=[’solid’], zorder=1)

pl.show()

Total running time of the example: 0 seconds

Figure 8.4: Iris Projections (page 61)

8.4 Iris Projections

This code generates the Iris projection example plots found in the tutorial
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•

•

Python source code: plot_iris_projections.py

from itertools import cycle
import pylab as pl

from sklearn.datasets import load_iris
from sklearn.decomposition import PCA

def plot_2D(data, target, target_names):
colors = cycle(’rgbcmykw’)
target_ids = range(len(target_names))
pl.figure()
for i, c, label in zip(target_ids, colors, target_names):

pl.plot(data[target == i, 0],
data[target == i, 1], ’o’,
c=c, label=label)

pl.legend(target_names)

#----------------------------------------------------------------------

# Load iris data

iris = load_iris()
X, y = iris.data, iris.target

#----------------------------------------------------------------------

# First figure: PCA

pca = PCA(n_components=2, whiten=True).fit(X)
X_pca = pca.transform(X)
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plot_2D(X_pca, iris.target, iris.target_names)

#----------------------------------------------------------------------

# Second figure: Kmeans labels

from sklearn.cluster import KMeans
from numpy.random import RandomState
rng = RandomState(42)
kmeans = KMeans(3, random_state=rng).fit(X_pca)
plot_2D(X_pca, kmeans.labels_, ["c0", "c1", "c2"])

pl.show()

Total running time of the example: 0 seconds

Figure 8.5: Basic numerics and plotting with Python (page 64)
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8.5 Basic numerics and plotting with Python

Python source code: plot_python_101.py

# import numpy: the module providing numerical arrays

import numpy as np

t = np.linspace(1, 10, 2000)

# import pylab: the module for scientific plotting

import pylab as pl

pl.plot(t, np.cos(t))

Total running time of the example: 0 seconds

Figure 8.6: SDSS Filters (page 65)
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8.6 SDSS Filters

This example downloads and plots the filters from the Sloan Digital Sky Survey, along with a reference spectrum.

•

•

Python source code: plot_sdss_filters.py

import os

import urllib2

import numpy as np

import pylab as pl

from matplotlib.patches import Arrow

REFSPEC_URL = ’ftp://ftp.stsci.edu/cdbs/current_calspec/1732526_nic_002.ascii’
URL = ’http://www.sdss.org/dr7/instruments/imager/filters/%s.dat’

def fetch_filter(filt):
assert filt in ’ugriz’
url = URL % filt

if not os.path.exists(’downloads’):
os.makedirs(’downloads’)

loc = os.path.join(’downloads’, ’%s.dat’ % filt)
if not os.path.exists(loc):

print "downloading from %s" % url
F = urllib2.urlopen(url)
open(loc, ’w’).write(F.read())
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F = open(loc)

data = np.loadtxt(F)
return data

def fetch_vega_spectrum():
if not os.path.exists(’downloads’):

os.makedirs(’downloads’)

refspec_file = os.path.join(’downloads’, REFSPEC_URL.split(’/’)[-1])

if not os.path.exists(refspec_file):
print "downloading from %s" % REFSPEC_URL
F = urllib2.urlopen(REFSPEC_URL)
open(refspec_file, ’w’).write(F.read())

F = open(refspec_file)

data = np.loadtxt(F)
return data

Xref = fetch_vega_spectrum()
Xref[:, 1] /= 2.1 * Xref[:, 1].max()

#----------------------------------------------------------------------

# Plot filters in color with a single spectrum

pl.figure()
pl.plot(Xref[:, 0], Xref[:, 1], ’-k’, lw=2)

for f,c in zip(’ugriz’, ’bgrmk’):
X = fetch_filter(f)
pl.fill(X[:, 0], X[:, 1], ec=c, fc=c, alpha=0.4)

kwargs = dict(fontsize=20, ha=’center’, va=’center’, alpha=0.5)
pl.text(3500, 0.02, ’u’, color=’b’, **kwargs)
pl.text(4600, 0.02, ’g’, color=’g’, **kwargs)
pl.text(6100, 0.02, ’r’, color=’r’, **kwargs)
pl.text(7500, 0.02, ’i’, color=’m’, **kwargs)
pl.text(8800, 0.02, ’z’, color=’k’, **kwargs)

pl.xlim(3000, 11000)

pl.title(’SDSS Filters and Reference Spectrum’)
pl.xlabel(’Wavelength (Angstroms)’)
pl.ylabel(’normalized flux / filter transmission’)

#----------------------------------------------------------------------

# Plot filters in gray with several redshifted spectra

pl.figure()

redshifts = [0.0, 0.4, 0.8]
colors = ’bgr’

for z, c in zip(redshifts, colors):
pl.plot((1. + z) * Xref[:, 0], Xref[:, 1], color=c)

pl.gca().add_patch(Arrow(4200, 0.47, 1300, 0, lw=0, width=0.05, color=’r’))

8.6. SDSS Filters 66



Astronomy with scikit-learn, Release Scipy2012

pl.gca().add_patch(Arrow(5800, 0.47, 1250, 0, lw=0, width=0.05, color=’r’))

pl.text(3800, 0.49, ’z = 0.0’, fontsize=14, color=colors[0])
pl.text(5500, 0.49, ’z = 0.4’, fontsize=14, color=colors[1])
pl.text(7300, 0.49, ’z = 0.8’, fontsize=14, color=colors[2])

for f in ’ugriz’:
X = fetch_filter(f)
pl.fill(X[:, 0], X[:, 1], ec=’k’, fc=’k’, alpha=0.2)

kwargs = dict(fontsize=20, color=’gray’, ha=’center’, va=’center’)
pl.text(3500, 0.02, ’u’, **kwargs)
pl.text(4600, 0.02, ’g’, **kwargs)
pl.text(6100, 0.02, ’r’, **kwargs)
pl.text(7500, 0.02, ’i’, **kwargs)
pl.text(8800, 0.02, ’z’, **kwargs)

pl.xlim(3000, 11000)
pl.ylim(0, 0.55)

pl.title(’Redshifting of a Spectrum’)
pl.xlabel(’Observed Wavelength (Angstroms)’)
pl.ylabel(’normalized flux / filter transmission’)

pl.show()

Script output:

downloading from ftp://ftp.stsci.edu/cdbs/current_calspec/1732526_nic_002.ascii

Total running time of the example: 5 seconds

Figure 8.7: SDSS Images (page 67)

8.7 SDSS Images

This script plots an example quasar, star, and galaxy image for use in the tutorial.
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Python source code: plot_sdss_images.py

import os

import urllib2

import pylab as pl

from matplotlib import image

def _fetch(outfile, RA, DEC, scale=0.2, width=400, height=400):
"""Fetch the image at the given RA, DEC from the SDSS server"""

url = ("http://casjobs.sdss.org/ImgCutoutDR7/"
"getjpeg.aspx?ra=%.8f&dec=%.8f&scale=%.2f&width=%i&height=%i"
% (RA, DEC, scale, width, height))

print "downloading %s" % url
print " -> %s" % outfile
fhandle = urllib2.urlopen(url)
open(outfile, ’w’).write(fhandle.read())

def fetch_image(object_type):
"""Return the data array for the image of object type"""

if not os.path.exists(’downloads’):
os.makedirs(’downloads’)

filename = os.path.join(’downloads’, ’%s_image.jpg’ % object_type)
if not os.path.exists(filename):

RA = image_locations[object_type][’RA’]
DEC = image_locations[object_type][’DEC’]
_fetch(filename, RA, DEC)

return image.imread(filename)

image_locations = dict(star=dict(RA=180.63040108,
DEC=64.96767375),

galaxy=dict(RA=197.51943983,
DEC=0.94881436),

quasar=dict(RA=226.18451462,
DEC=4.07456639))

# Plot the images

fig = pl.figure(figsize=(9, 3))

8.7. SDSS Images 68



Astronomy with scikit-learn, Release Scipy2012

# Check that PIL is installed for jpg support

if ’jpg’ not in fig.canvas.get_supported_filetypes():
raise ValueError("PIL required to load SDSS jpeg images")

object_types = [’star’, ’galaxy’, ’quasar’]

for i, object_type in enumerate(object_types):
ax = pl.subplot(131 + i, xticks=[], yticks=[])
I = fetch_image(object_type)
ax.imshow(I)
if object_type != ’galaxy’:

pl.arrow(0.65, 0.65, -0.1, -0.1, width=0.005, head_width=0.03,
length_includes_head=True,
color=’w’, transform=ax.transAxes)

pl.text(0.99, 0.01, object_type, fontsize=’large’, color=’w’, ha=’right’,
transform=ax.transAxes)

pl.subplots_adjust(bottom=0.04, top=0.94, left=0.02, right=0.98, wspace=0.04)

pl.show()

Script output:

downloading http://casjobs.sdss.org/ImgCutoutDR7/getjpeg.aspx?ra=180.63040108&dec=64.96767375&scale=0.20&width=400&height=400
-> star_image.jpg

downloading http://casjobs.sdss.org/ImgCutoutDR7/getjpeg.aspx?ra=197.51943983&dec=0.94881436&scale=0.20&width=400&height=400
-> galaxy_image.jpg

downloading http://casjobs.sdss.org/ImgCutoutDR7/getjpeg.aspx?ra=226.18451462&dec=4.07456639&scale=0.20&width=400&height=400
-> quasar_image.jpg

Total running time of the example: 0 seconds

Figure 8.8: SDSS Photometric Redshifts (page 69)

8.8 SDSS Photometric Redshifts

This example shows how a Decision tree can be used to learn redshifts of galaxies in the Sloan Digital Sky Survey.
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Python source code: plot_sdss_photoz.py

import os

import urllib2

import numpy as np

import pylab as pl

from sklearn.datasets import get_data_home
from sklearn.tree import DecisionTreeRegressor

DATA_URL = (’http://www.astro.washington.edu/users/’
’vanderplas/pydata/sdss_photoz.npy’)

LOCAL_FILE = ’sdss_photoz.npy’

def fetch_photoz_data():
if not os.path.exists(’downloads’):

os.makedirs(’downloads’)

local_file = os.path.join(’downloads’, LOCAL_FILE)

if not os.path.exists(local_file):
# data directory is password protected so the public can’t access it

password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm()
password_mgr.add_password(None, DATA_URL, ’pydata’, ’astroML’)
handler = urllib2.HTTPBasicAuthHandler(password_mgr)
opener = urllib2.build_opener(handler)
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fhandle = opener.open(DATA_URL)
open(local_file, ’w’).write(fhandle.read())

return np.load(local_file)

data = fetch_photoz_data()

N = len(data)

# put colors in a matrix

X = np.zeros((N, 4))
X[:, 0] = data[’u’] - data[’g’]
X[:, 1] = data[’g’] - data[’r’]
X[:, 2] = data[’r’] - data[’i’]
X[:, 3] = data[’i’] - data[’z’]
z = data[’redshift’]

# divide into training and testing data

Ntrain = 3 * N / 4
Xtrain = X[:Ntrain]
ztrain = z[:Ntrain]

Xtest = X[Ntrain:]
ztest = z[Ntrain:]

clf = DecisionTreeRegressor(max_depth=20)
clf.fit(Xtrain, ztrain)
zpred = clf.predict(Xtest)

axis_lim = np.array([-0.1, 2.5])

rms = np.sqrt(np.mean((ztest - zpred) ** 2))
print rms
print len(ztest)
print np.sum(abs(ztest - zpred) > 1)

ax = pl.axes()
pl.scatter(ztest, zpred, c=’k’, lw=0, s=4)
pl.plot(axis_lim, axis_lim, ’--k’)
pl.plot(axis_lim, axis_lim + rms, ’:k’)
pl.plot(axis_lim, axis_lim - rms, ’:k’)
pl.xlim(axis_lim)
pl.ylim(axis_lim)

pl.text(0.99, 0.02, "RMS error = %.2g" % rms,
ha=’right’, va=’bottom’, transform=ax.transAxes,
bbox=dict(ec=’w’, fc=’w’), fontsize=16)

pl.title(’Photo-z: Decision Tree Regression’)
pl.xlabel(r’$\mathrm{z_{true}}$’, fontsize=14)
pl.ylabel(r’$\mathrm{z_{phot}}$’, fontsize=14)
pl.show()

Script output:

0.221389887915
102798
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1538

Total running time of the example: 10 seconds

Figure 8.9: SDSS Spectra Plots (page 72)

8.9 SDSS Spectra Plots

This plots some of the SDSS spectra examples for the astronomy tutorial

•

•
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•

•

•

Python source code: plot_sdss_specPCA.py

import os

import urllib2

import numpy as np

import pylab as pl

from sklearn import preprocessing
from sklearn.decomposition import RandomizedPCA

DATA_URL = (’http://www.astro.washington.edu/users/’
’vanderplas/pydata/spec4000_corrected.npz’)
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def fetch_sdss_spec_data():
if not os.path.exists(’downloads’):

os.makedirs(’downloads’)

local_file = os.path.join(’downloads’, os.path.basename(DATA_URL))

# data directory is password protected so the public can’t access it

password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm()
password_mgr.add_password(None, DATA_URL, ’pydata’, ’astroML’)
handler = urllib2.HTTPBasicAuthHandler(password_mgr)
opener = urllib2.build_opener(handler)

# download training data

if not os.path.exists(local_file):
fhandle = opener.open(DATA_URL)
open(local_file, ’w’).write(fhandle.read())

return np.load(local_file)

#----------------------------------------------------------------------

#

# Load the data

data = fetch_sdss_spec_data()

wavelengths = data[’wavelengths’]
X = data[’X’]
y = data[’y’]
labels = data[’labels’]

from matplotlib.ticker import FuncFormatter
format = FuncFormatter(lambda i, *args: labels[i].replace(’ ’, ’\n’))

#----------------------------------------------------------------------

#

# Plot the first few spectra, offset so they don’t overlap

#

pl.figure()

for i_class in (2, 3, 4, 5, 6):
i = np.where(y == i_class)[0][0]
l = pl.plot(wavelengths, X[i] + 20 * i_class)
c = l[0].get_color()
pl.text(6800, 2 + 20 * i_class, labels[i_class], color=c)

pl.subplots_adjust(hspace=0)
pl.xlabel(’wavelength (Angstroms)’)
pl.ylabel(’flux + offset’)
pl.title(’Sample of Spectra’)

#----------------------------------------------------------------------

#

# Plot the mean spectrum

#

X = preprocessing.normalize(X, ’l2’)

pl.figure()

mu = X.mean(0)
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std = X.std(0)

pl.plot(wavelengths, mu, color=’black’)
pl.fill_between(wavelengths, mu - std, mu + std, color=’#CCCCCC’)
pl.xlim(wavelengths[0], wavelengths[-1])
pl.ylim(0, 0.06)
pl.xlabel(’wavelength (Angstroms)’)
pl.ylabel(’scaled flux’)
pl.title(’Mean Spectrum + Variance’)

#----------------------------------------------------------------------

#

# Plot a random pair of digits

#

pl.figure()
np.random.seed(25255)
i1, i2 = np.random.randint(1000, size=2)

pl.scatter(X[:, i1], X[:, i2], c=y, s=4, lw=0,
vmin=2, vmax=6, cmap=pl.cm.jet)

pl.colorbar(ticks = range(2, 7), format=format)
pl.xlabel(’wavelength = %.1f’ % wavelengths[i1])
pl.ylabel(’wavelength = %.1f’ % wavelengths[i2])
pl.title(’Random Pair of Spectra Bins’)

#----------------------------------------------------------------------

#

# Perform PCA

#

rpca = RandomizedPCA(n_components=4, random_state=0)
X_proj = rpca.fit_transform(X)

#----------------------------------------------------------------------

#

# Plot PCA components

#

pl.figure()
pl.scatter(X_proj[:, 0], X_proj[:, 1], c=y, s=4, lw=0,

vmin=2, vmax=6, cmap=pl.cm.jet)
pl.colorbar(ticks = range(2, 7), format=format)
pl.xlabel(’coefficient 1’)
pl.ylabel(’coefficient 2’)
pl.title(’PCA projection of Spectra’)

#----------------------------------------------------------------------

#

# Plot PCA eigenspectra

#

pl.figure()

l = pl.plot(wavelengths, rpca.mean_ - 0.15)
c = l[0].get_color()
pl.text(7000, -0.16, "mean" % i, color=c)

for i in range(4):
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l = pl.plot(wavelengths, rpca.components_[i] + 0.15 * i)
c = l[0].get_color()
pl.text(7000, -0.01 + 0.15 * i, "component %i" % (i + 1), color=c)

pl.ylim(-0.2, 0.6)
pl.xlabel(’wavelength (Angstroms)’)
pl.ylabel(’scaled flux + offset’)
pl.title(’Mean Spectrum and Eigen-spectra’)

pl.show()

Total running time of the example: 1 seconds

Figure 8.10: SGD: Maximum margin separating hyperplane (page 76)

8.10 SGD: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector
Machines classifier trained using SGD.
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Python source code: plot_sgd_separating_hyperplane.py

print __doc__

import numpy as np

import pylab as pl

from sklearn.linear_model import SGDClassifier
from sklearn.datasets.samples_generator import make_blobs

# we create 50 separable points

X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)

# fit the model

clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True)
clf.fit(X, Y)

# plot the line, the points, and the nearest vectors to the plane

xx = np.linspace(-1, 5, 10)
yy = np.linspace(-1, 5, 10)

X1, X2 = np.meshgrid(xx, yy)
Z = np.empty(X1.shape)
for (i, j), val in np.ndenumerate(X1):

x1 = val
x2 = X2[i, j]
p = clf.decision_function([x1, x2])
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Z[i, j] = p[0]
levels = [-1.0, 0.0, 1.0]
linestyles = [’dashed’, ’solid’, ’dashed’]
colors = ’k’
pl.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)

pl.axis(’tight’)
pl.show()

Total running time of the example: 0 seconds

Figure 8.11: Libsvm GUI (page 78)

8.11 Libsvm GUI

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point
and click and visualize the decision region induced by different kernels and parameter settings.

To create positive examples click the left mouse button; to create negative examples click the right button.

If all examples are from the same class, it uses a one-class SVM.

Python source code: svm_gui.py

from __future__ import division

print __doc__

# Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>

#

# License: BSD Style.

import matplotlib

matplotlib.use(’TkAgg’)

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet

import Tkinter as Tk

import sys

import numpy as np

from sklearn import svm
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from sklearn.datasets import dump_svmlight_file

y_min, y_max = -50, 50
x_min, x_max = -50, 50

class Model(object):
"""The Model which hold the data. It implements the

observable in the observer pattern and notifies the

registered observers on change event.

"""

def __init__(self):
self.observers = []
self.surface = None
self.data = []
self.cls = None
self.surface_type = 0

def changed(self, event):
"""Notify the observers. """

for observer in self.observers:
observer.update(event, self)

def add_observer(self, observer):
"""Register an observer. """

self.observers.append(observer)

def set_surface(self, surface):
self.surface = surface

def dump_svmlight_file(self, file):
data = np.array(self.data)
X = data[:, 0:2]
y = data[:, 2]
dump_svmlight_file(X, y, file)

class Controller(object):
def __init__(self, model):

self.model = model
self.kernel = Tk.IntVar()
self.surface_type = Tk.IntVar()
# Whether or not a model has been fitted

self.fitted = False

def fit(self):
print "fit the model"
train = np.array(self.model.data)
X = train[:, 0:2]
y = train[:, 2]

C = float(self.complexity.get())
gamma = float(self.gamma.get())
coef0 = float(self.coef0.get())
degree = int(self.degree.get())
kernel_map = {0: "linear", 1: "rbf", 2: "poly"}
if len(np.unique(y)) == 1:
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clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()],
gamma=gamma, coef0=coef0, degree=degree)

clf.fit(X)
else:

clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C,
gamma=gamma, coef0=coef0, degree=degree)

clf.fit(X, y)
if hasattr(clf, ’score’):

print "Accuracy:", clf.score(X, y) * 100
X1, X2, Z = self.decision_surface(clf)
self.model.clf = clf
self.model.set_surface((X1, X2, Z))
self.model.surface_type = self.surface_type.get()
self.fitted = True
self.model.changed("surface")

def decision_surface(self, cls):
delta = 1
x = np.arange(x_min, x_max + delta, delta)
y = np.arange(y_min, y_max + delta, delta)
X1, X2 = np.meshgrid(x, y)
Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z = Z.reshape(X1.shape)
return X1, X2, Z

def clear_data(self):
self.model.data = []
self.fitted = False
self.model.changed("clear")

def add_example(self, x, y, label):
self.model.data.append((x, y, label))
self.model.changed("example_added")

# update decision surface if already fitted.

self.refit()

def refit(self):
"""Refit the model if already fitted. """

if self.fitted:
self.fit()

class View(object):
"""Test docstring. """

def __init__(self, root, controller):
f = Figure()
ax = f.add_subplot(111)
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlim((x_min, x_max))
ax.set_ylim((y_min, y_max))
canvas = FigureCanvasTkAgg(f, master=root)
canvas.show()
canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas.mpl_connect(’button_press_event’, self.onclick)
toolbar = NavigationToolbar2TkAgg(canvas, root)
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toolbar.update()
self.controllbar = ControllBar(root, controller)
self.f = f
self.ax = ax
self.canvas = canvas
self.controller = controller
self.contours = []
self.c_labels = None
self.plot_kernels()

def plot_kernels(self):
self.ax.text(-50, -60, "Linear: $u^T v$")
self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$")
self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$")

def onclick(self, event):
if event.xdata and event.ydata:

if event.button == 1:
self.controller.add_example(event.xdata, event.ydata, 1)

elif event.button == 3:
self.controller.add_example(event.xdata, event.ydata, -1)

def update_example(self, model, idx):
x, y, l = model.data[idx]
if l == 1:

color = ’w’
elif l == -1:

color = ’k’
self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

def update(self, event, model):
if event == "examples_loaded":

for i in xrange(len(model.data)):
self.update_example(model, i)

if event == "example_added":
self.update_example(model, -1)

if event == "clear":
self.ax.clear()
self.ax.set_xticks([])
self.ax.set_yticks([])
self.contours = []
self.c_labels = None
self.plot_kernels()

if event == "surface":
self.remove_surface()
self.plot_support_vectors(model.clf.support_vectors_)
self.plot_decision_surface(model.surface, model.surface_type)

self.canvas.draw()

def remove_surface(self):
"""Remove old decision surface."""

if len(self.contours) > 0:
for contour in self.contours:

if isinstance(contour, ContourSet):
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for lineset in contour.collections:
lineset.remove()

else:
contour.remove()

self.contours = []

def plot_support_vectors(self, support_vectors):
"""Plot the support vectors by placing circles over the

corresponding data points and adds the circle collection

to the contours list."""

cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1],
s=80, edgecolors="k", facecolors="none")

self.contours.append(cs)

def plot_decision_surface(self, surface, type):
X1, X2, Z = surface
if type == 0:

levels = [-1.0, 0.0, 1.0]
linestyles = [’dashed’, ’solid’, ’dashed’]
colors = ’k’
self.contours.append(self.ax.contour(X1, X2, Z, levels,

colors=colors,
linestyles=linestyles))

elif type == 1:
self.contours.append(self.ax.contourf(X1, X2, Z, 10,

cmap=matplotlib.cm.bone,
origin=’lower’,
alpha=0.85))

self.contours.append(self.ax.contour(X1, X2, Z, [0.0],
colors=’k’,
linestyles=[’solid’]))

else:
raise ValueError("surface type unknown")

class ControllBar(object):
def __init__(self, root, controller):

fm = Tk.Frame(root)
kernel_group = Tk.Frame(fm)
Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel,

value=0, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel,

value=1, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel,

value=2, command=controller.refit).pack(anchor=Tk.W)
kernel_group.pack(side=Tk.LEFT)

valbox = Tk.Frame(fm)
controller.complexity = Tk.StringVar()
controller.complexity.set("1.0")
c = Tk.Frame(valbox)
Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(c, width=6, textvariable=controller.complexity).pack(

side=Tk.LEFT)
c.pack()

controller.gamma = Tk.StringVar()
controller.gamma.set("0.01")
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g = Tk.Frame(valbox)
Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
g.pack()

controller.degree = Tk.StringVar()
controller.degree.set("3")
d = Tk.Frame(valbox)
Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
d.pack()

controller.coef0 = Tk.StringVar()
controller.coef0.set("0")
r = Tk.Frame(valbox)
Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
r.pack()
valbox.pack(side=Tk.LEFT)

cmap_group = Tk.Frame(fm)
Tk.Radiobutton(cmap_group, text="Hyperplanes",

variable=controller.surface_type, value=0,
command=controller.refit).pack(anchor=Tk.W)

Tk.Radiobutton(cmap_group, text="Surface",
variable=controller.surface_type, value=1,
command=controller.refit).pack(anchor=Tk.W)

cmap_group.pack(side=Tk.LEFT)

train_button = Tk.Button(fm, text=’Fit’, width=5,
command=controller.fit)

train_button.pack()
fm.pack(side=Tk.LEFT)
Tk.Button(fm, text=’Clear’, width=5,

command=controller.clear_data).pack(side=Tk.LEFT)

def get_parser():
from optparse import OptionParser
op = OptionParser()
op.add_option("--output",

action="store", type="str", dest="output",
help="Path where to dump data.")

return op

def main(argv):
op = get_parser()
opts, args = op.parse_args(argv[1:])
root = Tk.Tk()
model = Model()
controller = Controller(model)
root.wm_title("Scikit-learn Libsvm GUI")
view = View(root, controller)
model.add_observer(view)
Tk.mainloop()
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if opts.output:
model.dump_svmlight_file(opts.output)

if __name__ == "__main__":
main(sys.argv)
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CHAPTER 9

People

This tutorial is brought to you by the scikit-learn1 folks, in particular:

• Jake Vanderplas2

• Olivier Grisel
• Jaques Grobler
• Gael Varoquaux3

1http://scikit-learn.org/
2http://www.astro.washington.edu/vanderplas
3http://gael-varoquaux.info/blog/
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CHAPTER 10

Citing the scikit-learn

A huge amount of work goes in the scikit-learn. Researchers that invest their time in developing and maintaining the
package deserve recognition with citations. In addition, the Parietal team needs the citations to the paper in order to
justify paying a software engineer on the project. To garanty the future of the toolkit, if you use it, please cite it.

See the scikit-learn documentation on how to cite1.

1http://scikit-learn.org/stable/about.html#citing-scikit-learn
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